Impacts of Recent European Environmental Directives on Electronics Manufacturing Industries For HK Society of Quality

Friday 17 December 2004

Edmond Chan / Stanedy Yue

Waste of Electrical and Electronics Equipment (WEEE) + Restriction of Hazardous Substances (RoHS)

Stanedy Yue Environmental Program Manager Quality BG Home Entertainment Networks Latest two European Union (EU) Directives on Chemical Requirements

- Waste Electrical & Electronic Equipment (WEEE) Directive. (2002/96/EC)
- Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive. (2002/95/EC)

http://europa.eu.int/comm/environment/waste/weee_index.htm

European Union Directives

- Bound to be adopted by the Member States
- NO direct effect within the Member States
- Supersede national laws

WEEE Directive **Objectives**

- Reducing the amount of Waste of Electrical or Electronics Equipments (WEEE) produced.
- Increasing the re-use, recycling and recovery of WEEE.
- Minimising the remaining waste for disposal.
- Improving the cradle-to-grave environmental performance of electrical and electronic equipment.

WEEE Directive

Scope - General

- Operates at a maximum voltage of 1,000 V a.c. or 1,500 V d.c.
- I0 categories
- Excluded military Products

WEEE Directive

10 Categories

- Large household appliances;
- Small household appliances;
- IT & telecommunications equipment;
- Consumer equipment;
- Lighting equipment (Except filament light bulbs & household luminaires);

WEEE Directive 10 Categories

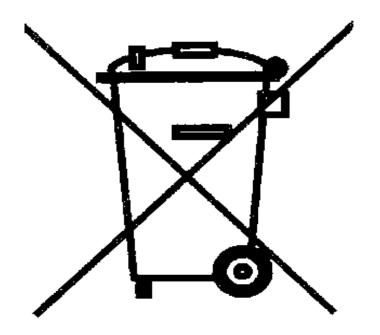
- Electrical and electronic tools (Except large stationary industrial tools);
- Toys, leisure and sports equipment;
- Medical devices (Except where implanted or contaminated);
- Monitoring and control instruments;
- Automatic dispensers;

WEEE Directive Financing

- Producers (+Importers) shall pay for the collection, treatment, recovery/recycling.
- Provide a financial guarantee for the management of their WEEE.
- Pay for the treatment of "historical waste" through a collective scheme.

WEEE Directive Implementation Timetable (1)

By I3 August 2004


 EE member States shall implement the WEEE Directive in their national laws.

By 13 August 2005

- Systems shall be set up for the separate collection of all WEEE from private households
- "Producers" shall provide guaranteed finance for the management of their own WEEE, either individually or by joining a collective scheme;
- Products shall be marked with
 - The crossed wheeled bin symbol
 - A mark clearly indicating that they were placed on the market after 13 August 2005. (New EU standards will be developed for this purpose)

WEEE Directive Marking / Labelling requirement

Crossed-out wheeled bin symbol:

Affixed to all applicable equipments on body.

- Where the product's size and function prevent this, it shall be placed on:
 - Packaging;
 - Instructions for use;
 - Warranty.

WEEE Directive Implementation Timetable (2)

By 31 December 2006, "Producers", or third parties acting on their behalf, shall

- establish systems for the recovery or recycling of WEEE
- meet targets for the rates of recovery and recycling (based on the average weight per appliance for each category)

RoHS Directive Objectives

- Reduction of the environmental and health risks posed by hazardous materials electrical and electronic equipment, even when separately collected and treated under the WEEE Directive.
- Complementary to & running in parallel with the WEEE Directive.

RoHS Directive Scope I

- Similar to the WEEE Directive, except:
 - Applies from I July 2006
 - Apply to categories 1,2,3,4,5,6,7 and 10.
 - Only covers new products placed on the market
 - Includes filament light bulbs and luminaires for household use
 - Medical devices or monitoring & control equipment are not covered

RoHS Directive Scope 2

- Does not apply to:
 - Spare parts for the repair of products placed on the market before I July 2006;
 - Re-used products that were placed on the market before I July 2006

RoHS Directive

Requirements - Outline

- From Ist July 2006, new electrical and electronic equipment placed on the market shall not contain
- Heavy metals:
 - Lead;
 - Mercury;
 - Cadmium;
 - Chromium (VI).
- Flame retardants:
 - Polybrominated biphenyls (PBB's)
 - Polybrominated diphenyl ethers(PBDE's).

RoHS Directive

Requirements - Outline

- Maximum limits for these banned substances, tolerating levels not intentionally introduced, are proposed as follows :-
 - Heavy metals:
 - Lead; (< 1000 ppm or 0.1% by wt.)
 - Mercury; (< 1000 ppm or 0.1% by wt.)
 - Cadmium; (< 100 ppm or 0.01% by wt.)
 - Chromium (VI). (< 1000 ppm or 0.1% by wt.)
 - Flame retardants:
 - Polybrominated biphenyls (PBB's) (< 1000 ppm or 0.1% by wt.)
 - Polybrominated diphenyl ethers(PBDE's). (< 1000 ppm or 0.1% by wt.)

RoHS Directive

Exemptions - Lead

Glass in: - Cathode ray tubes; - Electronic components; - Fluorescent tubes. Alloying elements in: - Steel (maximum 0.35% lead); - Aluminium (maximum 0.4% lead); - Copper (maximum 4% lead). Solders: - servers, storage & storage arrays (until 2010); - network infrastructure & telecom management. Electronic ceramic parts. (e.g. piezoelectronic devices)

RoHS Directive

Exemptions - Mercury

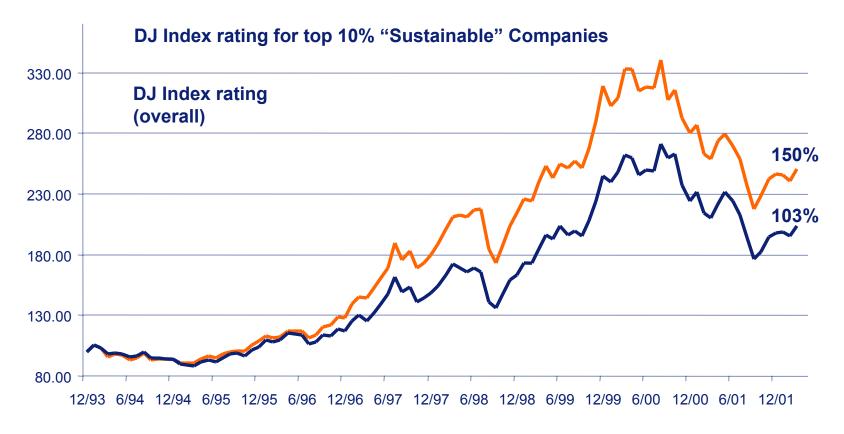
- Compact fluorescent lamps (maximum 5 mg per lamp);
- Straight fluorescent lamps for general purposes:
 - Halophosphate (maximum 10 mg per lamp);
 - Triphosphate with normal life (maximum 5 mg per lamp);
 - Triphosphate with long life (maximum 8 mg);
- Straight fluorescent lamps for special purposes;
- Other lamps not specifically mentioned.

RoHS Directive Exemptions - Cadmium

• Cadmium plating, except for applications banned under the Cadmium Directive 91/338/EEC. (E.g. production equipment or machinery and the associated products in certain industries

RoHS Directive Exemptions – Chromium (VI)

• Anti-corrosion agent for the carbon steel system cooling system in absorption refrigerators.


Implication to business

- Cost to do business increased.
- May have different costing system in different EU countries.
- Philips prefers visible fee.
- To be taken care by region, similar to the disposal fee of packaging.
- How to handle historical waste not yet agreed.

Philips Consumer Electronic Environmental Program

Dow Jones Sustainability World Indexes

(December 1993 - March 2002, Euro, Price Index)

"Sustainable" companies are seen as more financially sound.

PCE policy on Environment

 Determined by CEO Frans van Houten in PCE Environmental Steering Team 10 Feb 2004:

"PCE should be leading in environment"

• Global perspective

Areas to take the Lead in for PCE

Target

10% better Than best competitor

01-01-2005

01-01-2006

100% signed Sustainability & BSD

Energy

 \rightarrow Supports Flagships, Awards, EUP

- Lead free
- Bromine (TBBA) free in PWBs
- All suppliers Green by end of 2004
- Packaging reduction up till World Class

Lead free

Why Lead Free ??

European Community Legislation

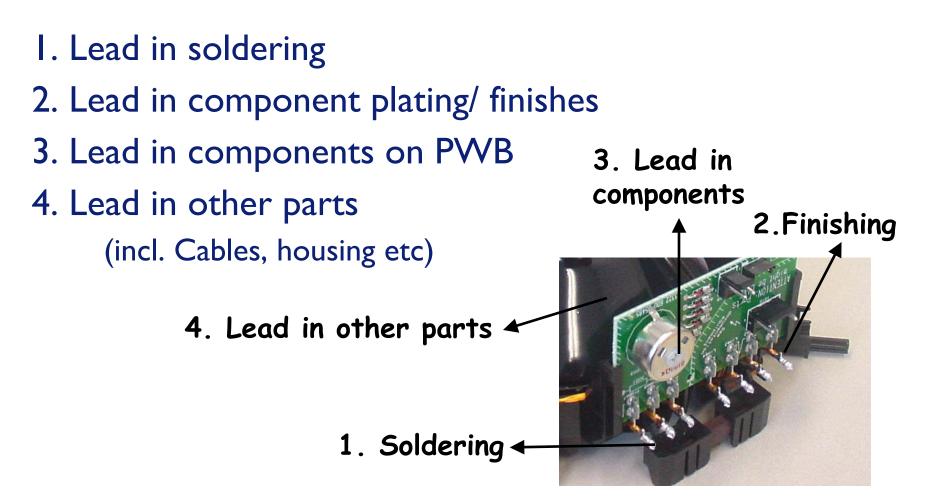
EU-Directive on: Waste from Electrical and Electronic Equipment (WEEE) & Restrictions on the use of Hazardous Substances (RoHS)

* **EU** *

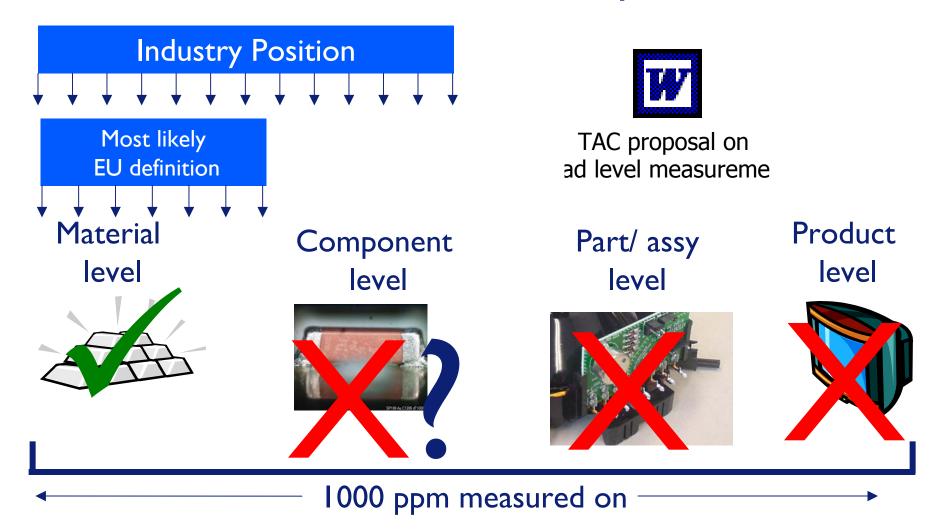
Article : "Member States shall ensure that the use of <u>lead</u>, mercury, cadmium, hexavalent chromium, and <u>halogenated flame retardants</u> is phased out by <u>1 July 2006</u>."

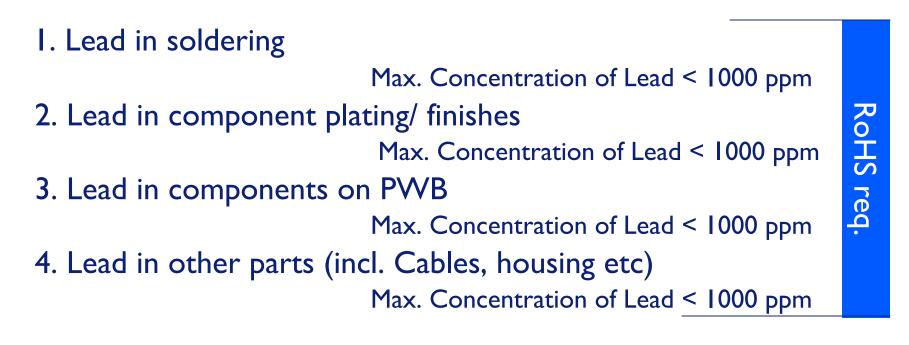
 Similar legislation published by Ministry of Information on Industry (MII) of PRC 中國信息產業部生產污染防治管理辦 法 will be effective on Jan 01, 2005

• <u>Health</u> concerns for human body


- Large doses of Pb (25mg/dl) in blood will result in heavy metal poisoning
- Environmental concerns
 - Source of Pb waste and end of life
 - Disposal in landfill (groundwater contamination)

PCE Lead Free Policy (Instruction : Frans van Houten, CEO PCE)


- Aim I-Jan -2005 all PCE products will be complete lead free.
- Not only lead-free soldering, but including lead-free components (finishes, cables, internal lead, etc.).

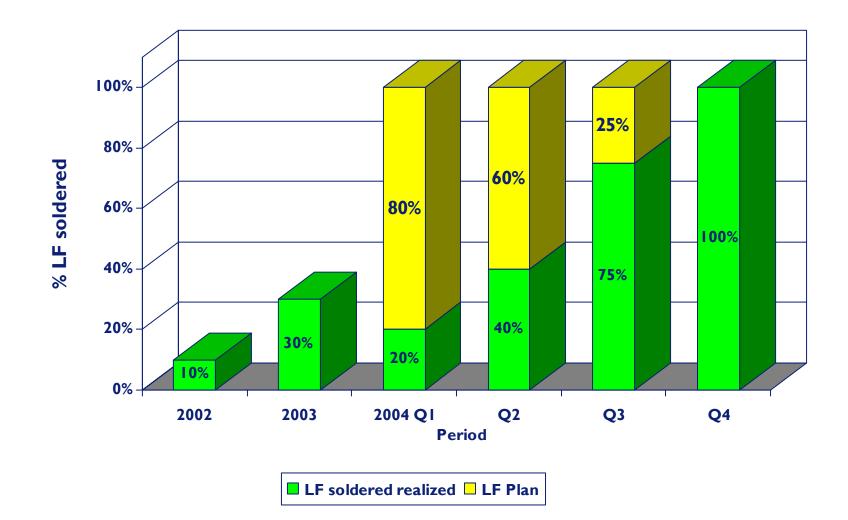

Where can lead be found?

What is the level of detail required?

What are the threshold values on lead?

Remark: ONLY for Outer sleeves of cables Max. Concentration of Lead < 300 ppm (outer sleeves of Cables) Proposition 65

Other regions follow EU approach


- EU Legislation 2002/95/EC
 - RoHS (Restriction of Hazardous Substances),

I July 2006

• China "exact copy" of EU RoHS text I July 2006

• California issues "SB20" legislation, I Jan. 2007, PBDE exempt, but reporting obligation.

Lead free status (% LF soldered)

Lead free status (% component)

Technical Highlights

Edmond Chan Engineering Manager Philips South China Industry BG Home Entertainment Networks

Lead Contamination Level Evolution for Wave Soldering

Assumption of the Simulation

- Maximum allowed Pb content as per EU directive (01-07-2006): **1000 ppm**
- Nominal Pb level in SAC solder bar: 300 ppm
- Class 2 panel with 2100 joints (axial, radial, SMC, etc)
- Average SnPb coating thickness is 4 um
- Pb content in component lead coating: 40% (SnPb40)
- Number of FR2 boards (250 x 328 mm) per hour: 133
- Shift: 8 hours & 3 shifts per day
- Solder bath content: 96 liter SAC305
- Consumption virgin SAC alloy: 2.27 kg/hr
- Drag out of solder due to board soldering: 2.28 kg/hr
- Drag in of solder from terminal coatings: 0.028 kg/hr

Simulation 25% Pb-I = 6

Speakers removed information for proprietary reasons.

After 31 shifts the Pb level of 1000 ppm is reached.

Simulation 15% Pb-I = 6

Speakers removed information for proprietary reasons.

After 89 shifts the Pb level of 1000 ppm is reached.

Simulation 10% Pb-I = 6

Speakers removed information for proprietary reasons.

The Pb contamination level remains at 800 ppm and the threshold of 1000 ppm is not reached.

LSDB Lead-Free Indicator Explanation

Pb-I	Compliant to LFS Process LF Plating		Indicated date compliant to :		
2	X	Х	Х		
3	X	Х	LFS √		
6	\checkmark	Х	LF plating $$		
9	\checkmark	\checkmark			
X	Component is not relevant for our LFS process				
Р	Applicable based on our positive experience with our lead-free soldering process				

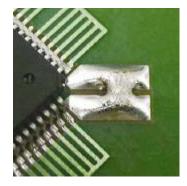
Selection of LF Solder Alloy & Flux

Criteria for choice of LF solder

- adequate wetting characteristics
- abundant supply
- melting point as low as possible
- good fatigue resistance
- good joint strength

Alloy Candidates

Lead-free solder alloys						
Melting point	Alloy	Reflow	Wave	Selective	Remarks	
227 °C	SnCu	-	++	+	Low cost	
221 °C	SnAg	++	+	+	Copper contamination in wave	
217 °C	SnAgCu	+++	+++	+++	Most recommended	
200-216 °C	SnAgBi	+++	+	+	Superior strength, fillet lifting	
199 °C	SnZn	+	-	-	Corrosion	
138 °C	SnBi	++		-	Low temperature	


Why Cu/ Ag are used in LFS

- Sb : harmful element
- Ge: low in reactivity table
- Bi : scarce element
- Au : too expensive
- In : too scarce
- Zn : form dross/ oxidation

Flux & Wavesolder Evaluation

- Alpha Metals EF3215 VOC free flux (with SAC405 solder)
 - No shorts on 50 QFPs wavesoldering
 - Less micro balling
 - No shorts on solder thieves
 - Thinner flux required
 - Good wetting on old class 2 boards

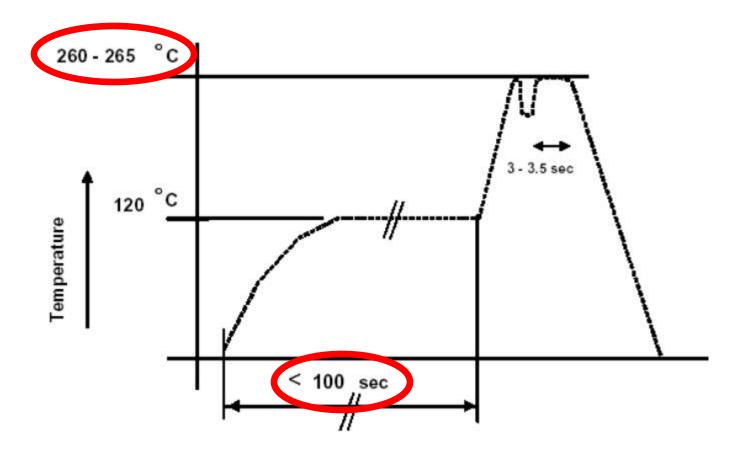
LF Wavesoldering Requirement

- Solder alloy SAC405
- EF3215 VOC free flux
- Extended preheating capacity 1.8m
- Nitrogen blanketing to reduce dross & oxidation

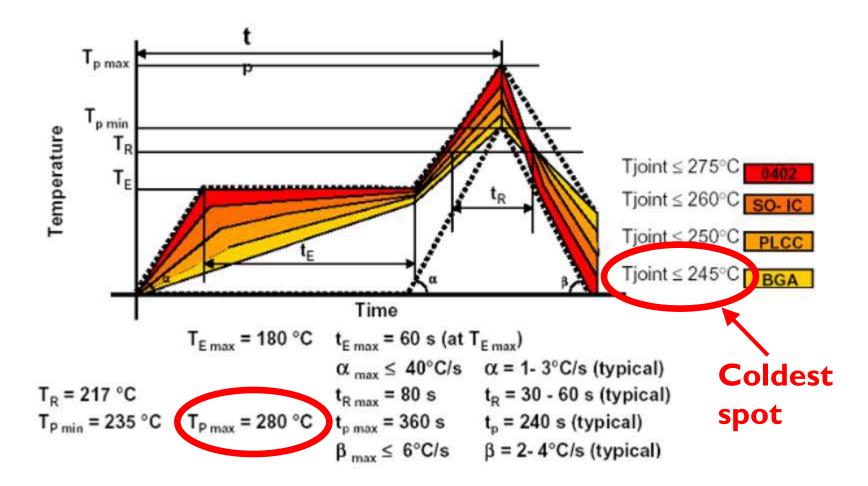
LF Reflow Requirement

- Solder alloy SAC405 (SnAg3.8Cu0.7)
- Nitrogen atmosphere to maintain OSP solderability for double sided reflow

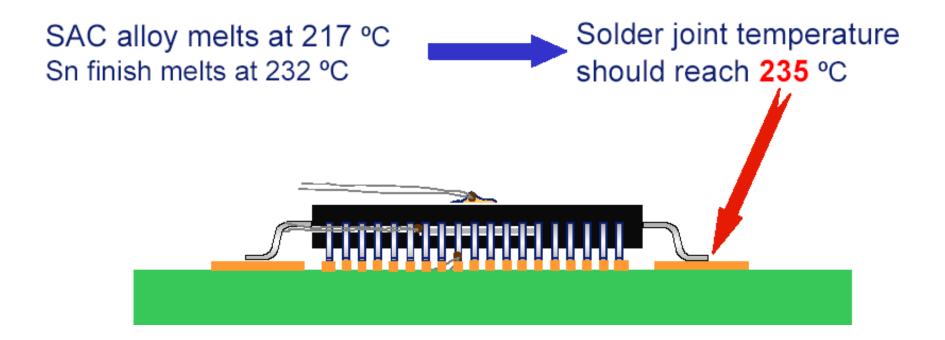
Summary wavesolder & reflow solder


Solder paste Solder bar Alloy

Flux


- : SAC405 (e.g. Alpha Metals)
- : SAC405 or SAC305
- : SnAg3.8Cu0.7
- : EF3215 VOC free

Time – Temperature Profile


Profile – Wavesoldering

Profile – Reflow solder

Solder joint temperature

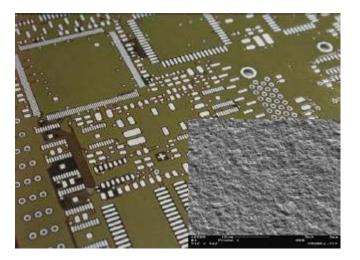
Summary Temperature Profiles

Wave solder

90 sec preheat @120 degC

- T_{max} @265 degC
- **Reflow solder**
- 60 sec preheat @180 degC T_{max} @280 degC (case by case) Manual solder

3-4 sec @380-420 degC



PCB Finishing

Lead Free Workshop HK SQ December 17, 2004, Venue: CltyU

Immersion Tin or Gold

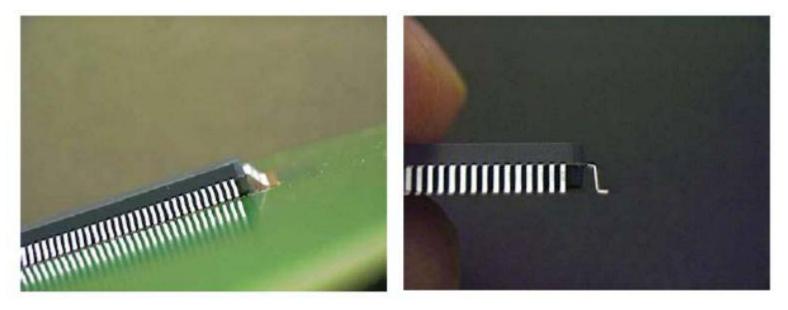
- Flat surface
- 0.8 1.2 micron thick
- Withstand multi reflow passes

OSP

- <u>Organic</u> <u>Solderable</u> <u>Protective</u> (OSP) coating
- Standard Micro-Etch

Good wettability VOC free flux compatible

Solderability Test for OSP


Speakers removed information for proprietary reasons.

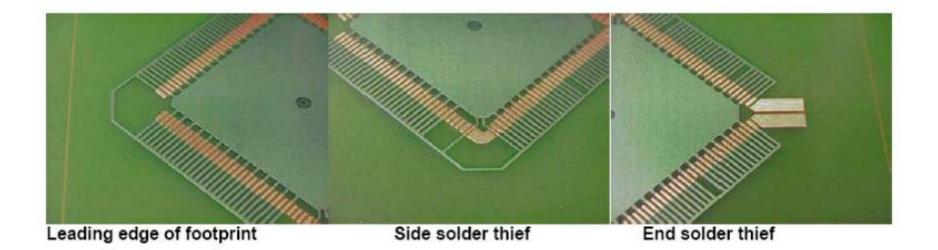
Summarize LF finishing

- Micro etch + OSP
- Immersion Sn
- Immersion Au

QFP128 Lead Free Wave Soldering Test

QFP128 lead angle 60 & 90 degree

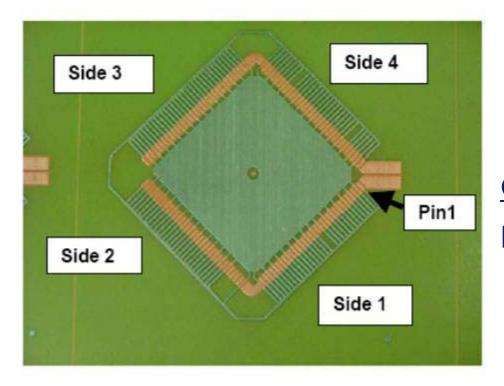
Type 1: lead angle 60°


Type 2: lead angle 90°

Objectives:

Find out the **best lead angle** and **LFS footprint** for QFP128

Lead Free Workshop HK SQ December 17, 2004, Venue: CltyU


Footprint of the Test Board

Generic Layout and Dimension

Speakers removed information for proprietary reasons.

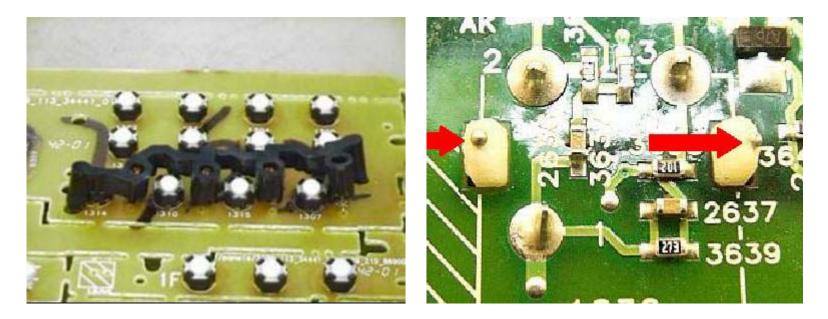
Assessment & Results

Observation: More shorts at side 2 & 3

ppm (short/ cpt)

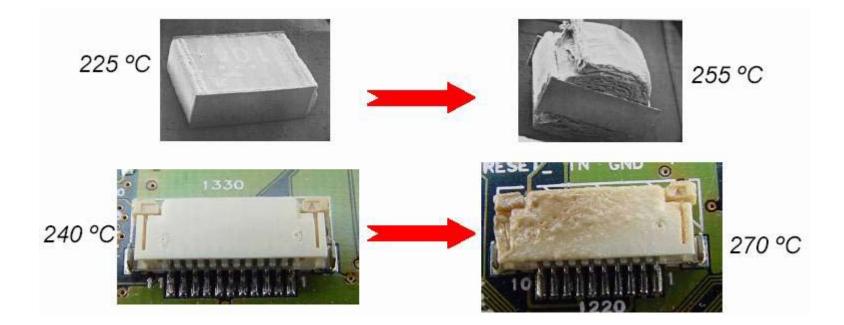
60 deg84690 deg4237

Lead Free Workshop HK SQ December 17, 2004, Venue: CltyU

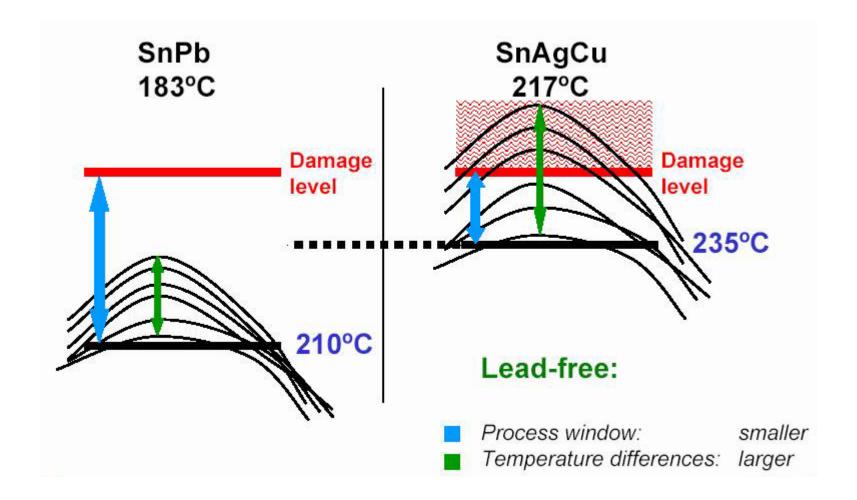

Findings & Conclusion

- The 60° lead angle is compliant with the mechanical requirements of D1809
- The 90° lead angle is far more sensitive for shorts
- Micro solder balling is omni-present on Lead Free wave soldered boards
- Larger solder balls occur due to the explosive boiling of not fully evaporated water of the flux after preheating
- The inspectability and repairability of the 60° lead angle QFP is better than of the 90°
- For Lead Free Soldering the distance between the 2 end solder thief parts need to be increased till 0.85 mm, to reduce the short risk

Lessons learnt from Pilot Project

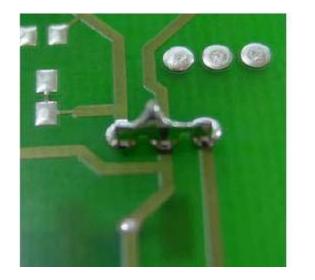

E/M parts melt

Intensive preheat + 265 degC solder bath



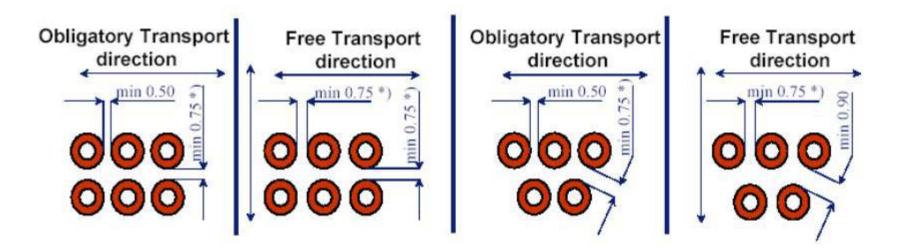
HK SQ LF Workshop

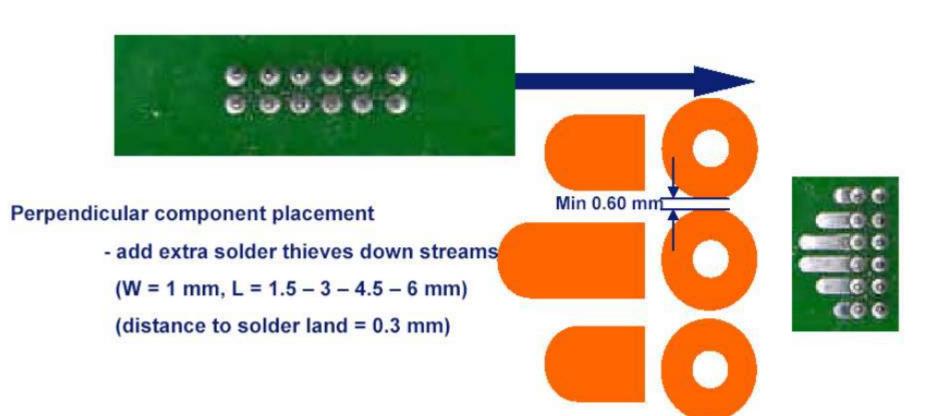
Components damage



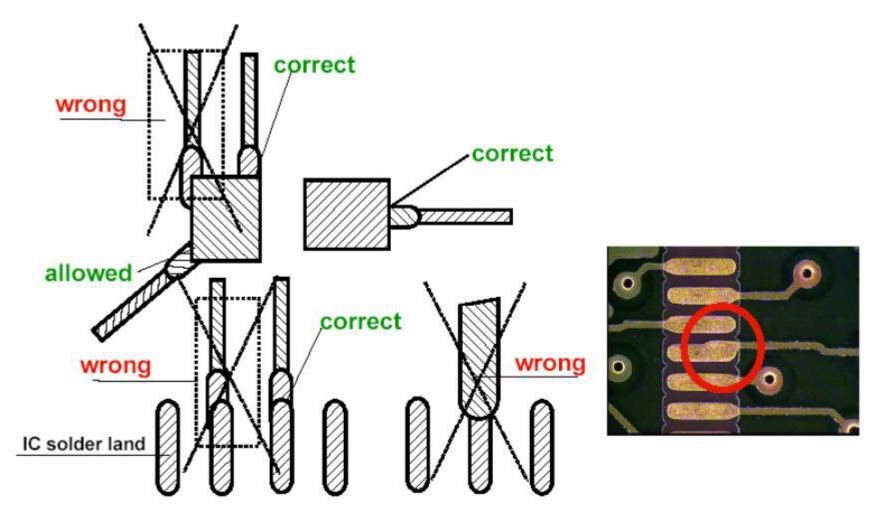
Process Window

Design Rule Change

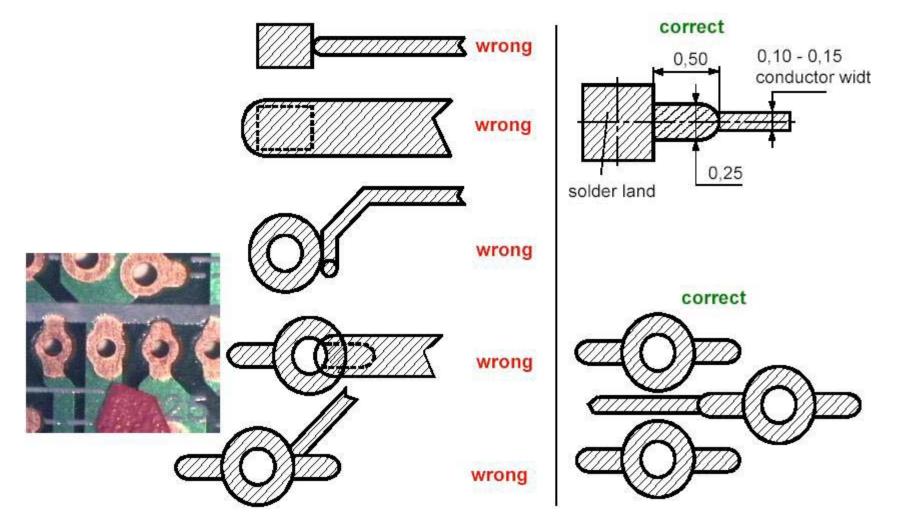

Risk of short-solder


Higher surface tension for SAC alloy
Higher susceptibility for oxidation

Round Pad Dimension



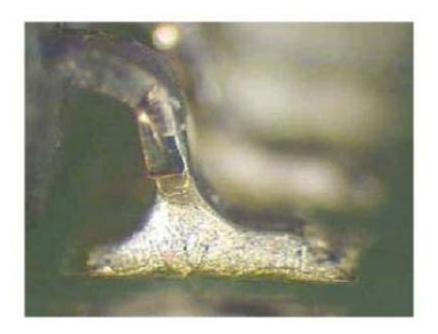
If spacing requirement is not met, oval shapes can be chosen


Solder Thieves

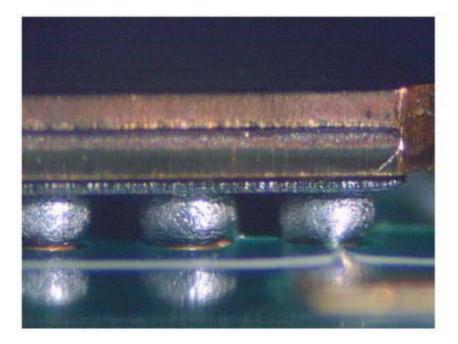
Track – Solderland Connection

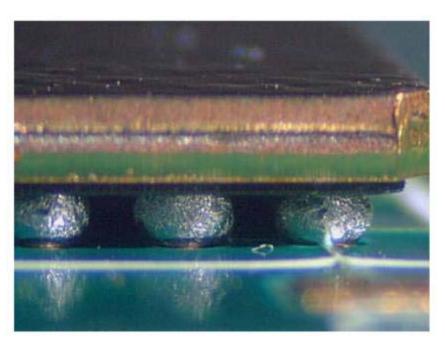
Track – Solderland Connection

Summarize Design Rule Change


- Enlarge solder thief 0.5 to 0.85mm
- Solder space multi-pin connector
 0.6 to 0.75mm
- No track solderland connection that will reduce solder space

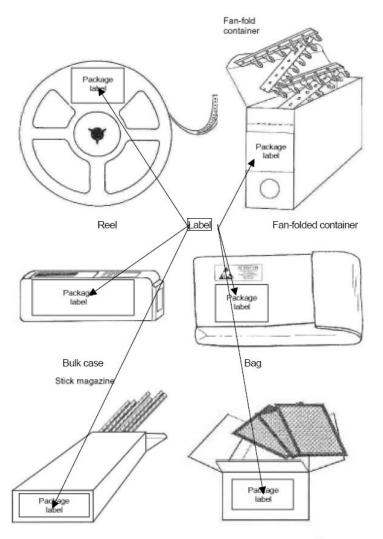
Visual Inspection on LFS Joints


QFP



Non Lead-free Smooth & shiny Lead-free (SAC alloy) Semi-dull

BGA


Non Lead-free

Smooth & shiny

Lead-free (SAC alloy) Grainy, Semi-dull

Markings

Minimum Units of Packaging

bag, reel, bulk case, stick, magazine and tray

LF Marking on PCBA

- Same as JEDEC Categories Same as JEDEC Categories
- el SnAgCu
- e2 Other Sn alloys No Bi or Zn

🧬 e3 – Sn

- e4 Pre-plated (i.e. Ag, Au, NiPd, NiPdAu)
- e5 SnZn, SnZnx (no Bi)
- 🥔 e6 contains Bi
- e0, e7, e8, e9 symbols are unassigned
- Bare board optional

Marking Hierarchy on PCBA

Example: HF e1 e2 XY

This board marking indicates **Halide-free** resin, board surface mount assembled with **SnAgCu** with wave assembly using **SnAg/ SnCu/ SnAgCuX** solder followed by Parylene conformal coating

8-Step Lead free Product Introduction Plan for Philips CE

PHILIPS

8 steps

- 2. Simulate LF process> Check process quality
- 3. Inventorized PB + components on LF > Accumulate LF know-how
- 4. Execute Design Stress Tests> Define product spec
- 5. Component replacement + design adaptation > Check impact on spec
- 6. LF process implementation in Jabil > Quality plan, yield study
- 7. LF process implementation in PA
- 8. "Green image" marketing & sales

The 8-step Roadmap

Speakers removed information for proprietary reasons.

Reliability Test Plan for OEM/ODM

Solder Joint Reliability Release

			ASSESSMENT		
PARAMETERS	REQUIREMENTS	YES *)	NO		
Lead Free solder alloy composition	Tin (S n) – Silver (Ag) – Copper (C u)		Please provide alloy specification		
Lead Free solder joints reliability (for other LF alloys than SAC305 or SAC405)	Accelerated Thermal Stress Test -20 degrees C / + 85 degrees C / min. 1 hr cycle with 20 min. at max and min temperature **) Number of cycles to be agreed upon per product (for TV products this is 3000 cycles)		Please provide solder joint reliability test data		

If answer is **NO**

Application Release

Date	Test Name	Sample Size	Test Condition	Result	Remarks
June 7 - 8	Dry Heat, Exposure	2 sets	+70C, 2 x 24h	accept	After tested, then turn to burn-in test
June 7 - 8	Cold Exposure	2 sets	-25C, 2 x 24h	accept	After tested, then turn to burn-in test
08-Jun	Dry Heat, Function	2 sets	+55C, 4 h	accept	After tested, then turn to burn-in test
07-Jun	Cold Functional	2 sets	-10C, 4 h	accept	1 set after tested, then turn to burn-in test
June 6 - 2	Damp heat	2 sets	+40C, 93%RH		1 set OK, 1 set CD door can not be opened.
10-Jun	Cold Drop	1 sets	-10C, 16 h; 68cr	accept	
15-Jun	Transport	2 sets	Vibration + Drop	accept	

If answer is **YES**

