Simulation and Lean Six Sigma

Improve the quality of your critical business decisions

DECISIONEERING

Simulation and Lean Six Sigma

Agenda

- Simulation and Lean Six Sigma
- What is Monte Carlo Simulation?
- Loan Process Example
- Inventory Optimization Example

Models and Simulation

- Models are an attempt to capture behavior and performance of business processes and products.
- Simulation is the application of models to predict future outcomes with known and uncertain inputs.

What Is Monte Carlo Simulation?

- A system that uses random numbers to measure the effects of uncertainty.
- The inputs are variable or uncertain X's represented by probability distributions (assumptions).
- The outputs are responses / Y's / formulas / effects (forecasts).
- A computer:
 - 1. Samples input values from the assumptions (PDFs) and puts them in the model
 - 2. Recalculates model to create a new response, which is recorded
 - Provides sampling statistics that characterize the output variation (mean, standard deviation, fitted probability distributions, Cpk, PPM, Z-score)

Typical Simulation Roles in Lean 6σ Projects

Monte Carlo Simulation and Optimization can be used in many Lean & Six Sigma phases:

- IDENTIFY VALUE / DEFINE: Project selection, Project financial review
- VALUE STREAM / MEASURE: Process simulation to include variations, Simulate "As-Is" state
- IMPROVE FLOW-CUSTOMER PULL / ANALYZE-IMPROVE:

Operations decision analysis and optimization, Process or product design modeling and improvement

 ALL LEAN PHASES: Service Process & OEE

Inputs: Probability Distributions

- Simulation requires probabilistic inputs.
- Distributions use ranges of values and assign a likelihood of occurrence for values (e.g., a normal distribution could represent variation of the part dimensions).

Outputs: Charts and Tables

Sensitivity Analysis: A Critical Tool

- Examine which few critical factors (X's) in your analysis cause the predominance of variation in the response variable of interest (Y)
- Operates during the simulation, calculating the relationships between all X's and Y's
- Similar to Pareto Chart in interpretation but is not a Main Effects plot

Sensitivity Analysis: Using the Results

- Acts as communication tool to help team understand what's driving defects
- Generally see a few factors having strongest impact on forecast variation
- Shows where to focus your energies (and where *not* to focus them)
- After reducing the variation for these few critical X's, you can rerun the simulation and examine the effects on the output

Loan Process Example

Simulation and Lean Six Sigma

Problem Statement

- A financial organization wishes to use Lean Six Sigma techniques on increasing the efficiency and decreasing the variation of their Loan Process.
- Customer: Loan Applicants
- Note: This could really be any simple process or sub-process / cell

Case Study Overview by Phase

Step 1: High-Level Process Map

Step 2: Refinement of High-Level Process Map

Refinement of High-Level Process Map

- Six Steps
- Four can be broken into Execution and Delay
- Three rework loops
- Upper Spec Limit = 96 hours

Step 3: Measure or Estimate Process Step Variation

- As part of the Value Stream Phase, an estimate or measurement of the process step times needs to be captured:
- **Sampling:** Samples of steps 1 and 6 indicate these steps vary lognormally and normally, respectively.
- Expert opinion: No reliable measures of Steps 2 through 4 exist so expert opinion is utilized
 - Step 2 has a most likely, a minimum, and a maximum estimated process time
 - Step 3 has an 80% chance of being anywhere between 16 and 32 hours and a 20% chance of being anywhere between 32 and 48 hours
 - Step 4 can be anytime between 1 and 8 hours
- **Collection System:** No data was measured for Step 5 so a measurement collection system was put in place for 100 processed loans.

Building the Model - 1

Process Step	Simulated Cycle Time		Assumpti	on Para	meters
Step 1:	0.5	0.5	0.125		lognormal (mean, st dev)
Step 2:	2	0.5	1	4	triangular (min, likely max)
Step 3:	1	0.5	1	80%	custom (two conditions)
Step 4:	1.5	1	2	20%	uniform (min, max)
Step 5:	16				(fit to data on Data tab)
Step 6:	8	8	2		normal (mean, st dev)

For Execution inputs, define each step as the appropriate distribution

www.crystalball.com

Building the Model - 2

Simulated Delay Time	Average Delay Time	Rework Necessary?	Probability of Rework
2	2		
14	14		
18 1	18	0	30%
10	10	0	20%
		0	5%

For Delay, define each step as an Exponential distribution

For Defects, define each step as a Yes / No (Binomial with 1 trial)

Building the Model - 3

- Now, just calculate Cycle Time (91 hours with delay and no rework)
- Cycle Time = Execution steps + Delay steps + Rework when it occurs
- Can also calculate VA Efficiency (is it always that high?)

Step 4: Monte Carlo Simulation to Predict Variation

Rather than run single steps, can run thousands of trials quickly.

Step 4: Monte Carlo Simulation to Predict Variation

Rather than run single steps, can run thousands of trials quickly.

Step 4: Monte Carlo Simulation to Predict Variation

Rather than run single steps, can run thousands of trials quickly.

Step 4: What Does the Simulation tell us?

After simulating 10,000 loans:

- Mean loan process cycle time is
 93 hours (vs. base case of 91 hours)
- Standard deviation = 40 hours!
- ~40% of loans (3,839/10,000) are over USL
- Sigma level is a dismal 0.084
- As-is state has serious problems. What is driving the variation?

3	Forecast: Cycle Time								
Edit	View Forecast Pref	erences Help							
10	000 Trials	Capability Metrics View	9,820 Displayed						
N	on-normal, fit to Lognorn								
	Metric	Value							
Þ	Mean	93							
	Standard Deviation	40							
	Ср								
	Cpk-lower								
	Cpk-upper	0.054							
	Cpk	0.054							
	Cpm								
	Z-LSL								
	Z-USL	0.08414							
	Zst-total	0.08414							
	Zlt	-1.42							
	p(N/C)-below								
	p(N/C)-above	0.38389							
	p(N/C)-total	0.38389							
	PPM-below								
	PPM-above	383,892.49							
	PPM-total	383,892.49							
	LSL								
	USL	96							
	Target								
	Shift	1.5							

Monte Carlo Simulation to Predict Variation

VA Efficiency is reduced by including effect of added Cycle Time due to delay times and rework cycles (non-value-added steps)

- VA Efficiency mean less than 100% (~ 35%)

Step 5: Review Sensitivity Analysis

- Run Sensitivity Analysis to determine major driver of variation.
- Can anything be done to reduce Document Verification Delay times?
 - Assume average delay time can be reduced by 50% in Cell K33.
 - Run simulation.

Step 6: Reiterate Monte Carlo Analysis

- Run Monte Carlo again → less than 20% of process loans are out of specification → Sigma Level of ~ +0.8
- The Loan Process Cycle Time quality has been improved.

Reiterate Monte Carlo Analysis

 By reducing the primary non-value-added Cycle Time variation (Verification Delay), the Value-Added Efficiency mean has also been increased (from ~ 35% to ~ 40%)!

Comparison of Results

Stage	Mean Cycle Time	Mean VA Efficiency	Standard Deviation	Sigma Level
Base Case	91 hours?	31.5%?	???	???
As-Is Sim	93 hours	~35%	40 hours	.08
To-Be Sim	75 hours	~40%	26 hours	.83

Analysis is iterative and the model will be adjusted (improved) as the project continues...

Case Study Conclusions

- Quality Levels will be increased by decreasing variation on driving input variables.
 - Monte Carlo analysis predicts quality levels.
 - Sensitivity analysis identified Verification Defect as most influential input variable.
- Knowledge of variation drivers allows one to experiment with the process in the simulation world and determine improvements.
 - Simulations allow the user to determine quality improvements without real-world implementation.
 - Saves time and money while improving the process.

Inventory Optimization Example

	Α	В	С	D	E	F	G	Н		J	K	L		M	N		0
1		Inv	ent	ory	Simu	Ilati	on	With	Lost	Sale	es						_
2											- Op	otimize o	orde	r qua	antity a	nd	~
3		> 0	rder Q	uantity	250	units	-	0	rder Cost	\$ 50	reor	der poin	it to	mini	mize (:ost	
4		> F	Reorde	r Point	250	units		Hol	ding Cost	\$0.20							- +
5		In	itial Inv	entory	250	units		Lost S	ales Cost	\$ 100			Tota	al Anr	nual Co	sts	
6	1		Lea	id time	2	weeks						\$1,040	\$1	,050	\$5,00	0	7,090
7	1																
8		Beg								Ending							
9		Inv	Beg	Order	Units		End	Lost	Order	Inv	Week	Hold	0	rder	Shor	t	Total
10	Week	Pos	Inv	Rec'd	Rec'd	Dmd	Inv	Sales	Placed?	Pos	Due	Cost	С	ost	Cost	:	Cost
11	1	250	250		0	100	150	0	TRUE	400	4	\$30.00	\$	50	\$ -		i 80
12	2	400	150		0	100	50	0	FALSE	300	_	\$10.00	\$	-	\$ -		5 10
13	3	300	50	FALSE	0	100	0	50	TRUE	500	6	\$ -	\$	50	\$5,00	0 9	5,050
14	4	500	0	TRUE	250	100	150	0	FALSE	400		\$30.00	\$	-	<u></u> -		30
15	5	400	150	FALSE	0	100	50	0	FALSE	300	~	\$10.00	\$	-	ş -		i 10
16	6	300	50	TRUE	250	100	200	0	TRUE	450	9	\$40.00	\$	50	5 - C		5 90 5 00
1/	1	450	200	FALSE	0	100	100	0	TRUE	350	44	\$20.00 c	ን ሮ	-	ა - ი) ZU
10	0	500	100	TDUE	250	100	150	0		500	11	\$ - \$	ې د	50	ф -		0 20
20	10	400	150	EALSE	250	100	50	0	FALSE	300		\$30.00 \$10.00	ф С	-	9 - C		\$ 30 \$ 10
20	11	300	50	TDUE	250	100	200	0	TDUE	460	14	\$10.00	φ C	- 60	9 - 5		2 90
21	12	450	200	FALSE	230	100	100	0	FALSE	350	14	\$20.00	ŝ	- 50	s -	č	5 30 5 20
23	13	350	100	FALSE	0	100	0	0	TRUF	500	16	\$ -	ŝ	50	\$ -		50
24	14	500	0	TRUE	250	100	150	ő	FALSE	400		\$30.00	ŝ	-	\$ -	-	\$ 30
25	15	400	150	FALSE	0	100	50	Ő	FALSE	300		\$10.00	ŝ	-	\$ -	-	s 10
00	40	200		TOUL		400	000		TOUE	450	40	C 40.00	÷.				00

Problem Statement

- The two basic inventory decisions that managers face are: (1) how much additional inventory to order or produce, and (2) when to order or produce it.
- Although it is possible to consider these two decisions separately, they are so closely related that a simultaneous solution is usually necessary.
- Given variable (uncertain) demand over a 52-week period, you need to determine an optimal order quantity and reorder point that results in the lowest possible total annual costs.

Step 1: Create Excel Model

	> Or > F Ini	rder Qu Reorder Itial Inv Lea	uantity r Point entory d time	250 250 250 250 2	units units units weeks	•	O Hole Lost Sa	rder Cost ding Cost ales Cost	\$50 \$0.20 \$100	- Op reor	otimize o der poin \$1,040	rder qu at to min Total An \$1,050	antity an imize co nual Cost \$5,000	d sts s \$ 7,090
Week	Beg Inv	Beg	Order	Units		Fnd	Lost	Ordor	Ending	Wook	Hold	Order	Short	Total
W C C N	Pos	Inv	Rec'd	Rec'd	Dmd	Inv	Sales	Placed?	Pos	Due	Cost	Cost	Cost	Cost
1	Pos 250	Inv 250	Rec'd	Rec'd C	Dmd 100	Inv 150	Sales 0	Placed? TRUE	Pos 400	Due 4	Cost \$30.00	Cost \$ 50	Cost \$ -	Cost \$ 80
1 2	Pos 250 400	Inv 250 150	Rec'd	Rec'd C	Dmd 100 100	Inv 150 50	Sales 0 0	Placed? TRUE FALSE	Pos 400 300	Due 4	Cost \$30.00 \$10.00	Cost \$ 50 \$ -	Cost \$ - \$ -	Cost \$ 80 \$ 10
1 2 3	Pos 250 400 300	250 150 50	Rec'd	Rec'd 0 0	Dmd 100 100 100	Inv 150 50 0	Sales 0 0 50	Placed? TRUE FALSE TRUE	Pos 400 300 500	Due 4 6	Cost \$30.00 \$10.00 \$ -	Cost \$ 50 \$ - \$ 50	Cost \$ - \$ - \$5,000	Cost \$ 80 \$ 10 \$ 5,050
1 2 3 4	250 400 300 500	Inv 250 150 50 0	Rec'd FALSE TRUE	Rec'd 0 0 250	Dmd 100 100 100 100	Inv 150 50 0 150	Sales 0 0 50 0	Placed? TRUE FALSE TRUE FALSE	Pos 400 300 500 400	Due 4 6	Cost \$30.00 \$10.00 \$- \$30.00	Cost \$ 50 \$ - \$ 50 \$ 50 \$ -	Cost \$ - \$ - \$5,000 \$ -	Cost \$ 80 \$ 10 \$ 5,050 \$ 30

- Determine amounts for inventory and ordering
- Create calculation for whether or not to place order
- Calculate individual weekly costs and roll up to annual costs
- As-is state: \$7,090 in Annual costs for order of 250 units and reorder of 250 units

Step 2: Define Key Assumptions

All 52 weeks have same Poisson distribution for demand

Step 3: Run the Simulation

- After 10,000 trials, find that mean annual inventory costs is around \$25,500.
- The base case of \$7,090 is far from realistic given the uncertainty of demand.

Step 4: Stochastic Optimization

Simulation can help you to understand and reduce variation but does not by itself offer the best solution.

An optimization model answers the question "<u>What's</u> <u>best</u>?" rather than "What happened?" (statistics), "What if?" (simulation) or "What will happen?" (forecasting).

The combination of simulation and optimization lets you make the best (optimal) decisions while accounting for the variability or uncertainty inherent within a process.

Running Simulation with Optimization

- Define objective: minimize mean of annual inventory costs
- Define controllable variables: Order Quantity (200-400 units) and Reorder Point (200-400 units)

Optimization (1 = 1000 trials)	Order Quantity	Reorder Point	Minimized Cost (mean)
1	250	265	\$18,474
2	345	320	\$2,791
3	325	275	\$7,705

Running Simulation with Optimization

Optimization

After 10 minutes, optimization has converged on Order Point of 330 and Reorder Point of 325.

• This will minimize the Annual Costs to a mean of ~\$2825.

	Simulation	Minimize Objective Total Annual Costs Mean	Order Quantity	Reorder Point
	2	4549.66	300	300
	4	3755.89	400	400
	7	3452.86	320	385
	11	3062.83	350	350
	13	3020.66	380	315
	18	2964.73	375	325
•	Best: 36	2824.97	330	325

Running Simulation with Optimization

Re-run simulation with new controls and see optimized inventory problem at 10,000 simulation trials.

Case Study Conclusions

- Modeling demand of as-is state can show weaknesses of base case estimations.
- Stochastic optimization lets you run simulations while changing controlled variables for each consecutive simulation.
- By adjusting controlled variables during optimization, you can determine settings that will optimize your output (e.g., minimize costs, maximize profit).
- Final optimization solution results in reduced inventory waste and substantial cost savings.

¥

?

<u>C</u>rystal Ball Help User <u>M</u>anuals

Examples Guide

Examples of Simulation Reducing Waste

	Transportation	Lo	cation of Facilities- Distribution Center
	Inventory		Inventory System
	Movement		
	Waiting		Workforce with Queing
	Over Processin	ıg	Loan Process
			Value Stream
	Overproduction	า	Sales Projection
	Defects		Hidden Factory
Help	2	Type a qu	
0	Microsoft Excel Help F1	s % ,	
	About Microsoft Office Excel		
	Crystal Ball	About Crystal Ball	

Benefits of Simulation in Lean 6σ Projects

- Identify the Current Process Capability
 - Identify the capability of current process, product or service.
- Identify the Primary Inhibitors to Process Flow
 - Immediate insight on the impact to flow of work in queue, batch processing, transportation delays, and rework cycles.
 - Examine alternate process configurations at low cost.
- Establish Optimal Lean Pull
 - Reduce or eliminate non-value-adding activities.
 - Reduce, perform in parallel and/or optimize business-valueadding activities.

When to Use Simulation in Lean 6σ Projects?

- Mathematical relationship exists
- You have quantified the variation in multiple inputs
- Little or no data for as-is state
- Can represent problem in a spreadsheet (for Crystal Ball)
- Simple process or sub-process (cell) level
- Want quick overview to help project direction
- You have a high cost for implementation
- Want to avoid extended wait for post-improve results

Questions and Answers

Oracle Crystal Ball Global Business Unit

Phone: +1.303.534.1515

Fax: +1.303.534.4818

HILARY.EMMETT@ORACLE.COM

Improve the quality of your critical business decisions

Special Thanks to Larry Goldman for case study contributions