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i Statistical Experimental Designs

Design of experiment is a branch of
statistics and has been playing an important
role in development of sciences and new

technigues, especially, in development of
high-tech.

Experiments are performed almost
everywhere nowadays, usually for the
purpose of discovering something about a
particular process or system.



i Experimental design

= A good experimental design should
minimize the number of
experiments to acquire as much
iInformation as possible.

= Knowledge discovery




Complexities
i Experiments, especially 1in high-tech

experiments, have the following characteristics.

 Multi-factors

* Nonlinearity

» Experimental domain 1s large

* Underlying model 1s unknown

* No analytic formula of the response
surface




Experiments
- Underlying model isunknown

Example 1.

In a biological experiment we wish to
explore the relationship between the growth
time(x) and the response ( y). Assume the
underlying model

y=yx)=1-¢>,xe(0,2], (2.1

1s unknown. There are many ways to design this
experiment based on different statistical models.



Welbull Growth Curve M oded
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1. ANOVA Modedls

The experimenter observes the response at

several growth times, X,,---,X,, thatare

called /evels. For each X; we repeat
experlment n. times and related responses
are Yy, Yo N
A statistical model is

Yi =H; +¢ ijaj:la”'aqa i:l)...,nj,
where 12, is the true value y(x;)and € ; are
random errors that are mdependently
1dentically distributed according to N9, 62 ).



a. ANOVA Models
-- Factorial Designs

Vi =Mt e =1 g,
=pu+a;+eg,i=1, -, n,
a +--+a, =0
« U 1s the overall mean of y over [0,2]
» M 1s the true value y(x;)

» ¢ 1s the main effect of y at x,

« &, are i.i.d. random errors N(0, 0'2).



which we can efficiently estimate 1M 7,51 q}

or {{,a,;, -, &, fand to assess whether y(x)
significantly depends on  x =x,,---, x, .

| Under the model we need to find a design under

- Two-level factorial designs have been widely used

- Two-level factorial designs are not enough to explore
non-linearity, like this example.

« Factorials with more levels are useful



Two-level designs are shown to be
Insufficient for nonlinear modedl.

The right experimental
range but wrong levels.

The right experimental
range and right levels, but,
it cannot explore more
detailed relationships
between Y and A.

Wrong experimental
range.




05}

Factorial design with 4 levels




b. Linear regression models
-- Optimal Designs

From the professional knowledge the experimenter wants to

use a regression model to fit relationship between x and y, for

example

or
yx) =p,+p ,x +,6’2x2 +,B3x3 + &,

or more general
yx)=p fi(x)+--+p, 1, (x)+e&,
where functions f 157", f nare known and \]E- - E“\};“

unknown.



fixed number of runs such that we can obtain
the best estimators of the parameters.

The so-called optimal design 1s from this 1dea.
There are several criteria, such as D-optimality, 4-
optimality, E-optimality, etc, in theory of optimal
designs. See Atkinson and Donev (1992) and
Pulkelsheim (1993) for the details. When the

model 1s
) =Py +f,x+p,x" +é,

the corresponding D-optimal design is presented

i We want to design an experiment with a




D-optimal design
for second-order polynomial model




c. Nonparametric regression models
-- Uniform Designs

When the experimenter do not have any
prior knowledge about the underlying model,
a nonparametric regression model

y = g(x) + &,

where function g 1s unknown, can be
employed.




c. Nonparametric regression models
-- Uniform Designs

We want to estimate y(x) at each x, 1.e.
to find an approximate model

v =2&(x)

A natural 1dea 1s to observe y at x;,---, x,,,
that are uniformly scattered in the domain, 1.e.,
a space filling design, the uniform design is
one of space filling designs.



Many smooth techniques, such as

e polynomial regression model

e kernel estimator

* Kriging models

e wavelets

 spline, B-spline

e Artificial neural networks

can be used for estimation of the function g.



Experiments can be implemented 1n

* Industrial factory

» Laboratory

* Computer

The latter 1s called

« Simulation Experiment, or

* Computer Experiment







3 Uniform designs

A demostration
example



Example

In an chemical experiment the experimenter
chose 4 factors each having 12 levels

Step 1. Choose factors and their levels

Four factors, the amount of formaldehyde (x,),
the reaction temperature ( x,), the reaction time (x,),
and the amount of potassium carbonic acid (x,), are
under consideration. The response variable 1s
designated as the yield (y).



The experimental domain and levels are chosen to be

i 1, 5.4]x[5, 60]x[1, 6.5]x[15, 70]

* x,: the amount of formaldehyde (mol/mol):
1.0,14,1.8,2.2,2.6,3.0,3.4,3.8,4.2,4.6,5.0,5.4

* x,: the reaction temperature (°C):
5,10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

* x;: the reaction time (rour):
1.0, 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5, 6.0, 6.5

* x,: the amount of potassium carbonic acid (m/):
15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70



Step 2. Design

Theuniform design, like the orthogonal design,
can betabulated.

- ™
Maximum Number
of Factors

Uniform Design

!

/

Number of Number of Levels

Experiments
N

Lo #4122 0/ /349349349 222 rvtls Lal-Bvs odve Lhl-/7T Tvavfnirzar I orcres



U,,(12%) U 6(32>< 2)

No. | 1 2 3 4 No | 1 2 3

| 1 10 4 7 1 1 1 1

2 2 5 11 3 2 2 1 2

3 3 1 7 9 3 3 2 1

4 14 6 5 3 4 1 2 2

5 15 11 10 11 5 2 3 1

6 6 9 8 1 6 3 3 2

7 17 4 5 12

] 8 2 3 2 | Allthelevelsof each column appear
9 19 7 12 8§ equally often

10110 126 4 |, gxperimental points determined by
11 111 8 2 10| thetaple uniformly are scattered on
12 112 3 9 6 | thedomain.




Step 2. Design

U,,(12%) Table

1 2 3

118 2 10{50 40 1.5 60
9 7 12 8 142 35 6.5 50
8§ 2 3 2138 10 2.0 20
10 12 6 4 |46 60 3.5 30
7
3
5

3

0 — > 0 00 WV R W=

This experiment
could be arranged
with a UD table
of the form
U,,(12%), where n
1s a multiple of 7.
[t turns out that
the experimenter
chooses U,,(12%)

design.

1 10 4 10 50 2.5 45
5 11 1.4 25 6.0 25
6 22 30 1.0 35
{534 20 3.0 70
3.0 45 45 15
118 5 40 55
26 55 55 65
110 11154 15 50 40

(V) B US B e) WL R SN\
—_ O
J 00 W —




3. Run experiments

+

No. |1 2 3 4
1 [11 8 2 10
2 19 7 12 8
318 2 3 2
4 110 12 6 4
501 10 4 7
6 |2 5 11 3
714 6 1 5
8 | 7 4 3 12
916 9 8 1
03 1 7 9
115 11 10 11
1212 3 9 6

5.0
4.2
3.8
4.6
1.0
1.4
2.2
3.4
3.0
1.8
2.6
5.4

40
35
10
60
50
25
30
20
45

35
15

1.5
6.5
2.0
3.5
2.5
6.0
1.0
3.0
4.5
4.0
5.5
5.0

60
50
20
30
45
25
35
70
15
35
65
40

0.1836
0.1739
0.0900
0.1176
0.0795
0.0118
0.0991
0.1319
0.0717
0.0109
0.1266
0.1424




Step 4. Modeling

A linear model
iE(y) =0, +p X, +0,x, +fxy +5,x,,

by the least square estimation we obtain:

(4.1)

E(») = 0.0533 +0.0281x, +0.0010x, + 0.0035x, + 0.0011x,

ANOVA Table:

Type |l Tests
Source DF Sum of Squares |[M ean Square] F Stat |Prob > F
X1 1 0. 018 0|]. 018 21
X2 1 0.00493 of. ooo 3|.
X3 1 0.00(qQ14 O. 000 0
X4 1 0. 0046 0. 004 5.

o .. ONS



By the backward elimination

y =0.0107 +0.0289 x,
i with R?=57.68% and S>= 0.0014.

Consider the quadratic regression model

E(y) ﬂo"'ZﬂﬂQ"‘ZﬂU XX

I<]
with technique of selection of variables MAXR we find

$=0.0446 + 0.0029x, + 0.0260x, +0.0071x, x,
+0.000036x,x, +0.000054 x (1)

with R2=97.43% and S?= 0.0001.



ANOVA Table

Analysis of Variance

Source DF Sum of Squares |[Mean Square] F Stat |Prob>F
M odel o 0. 0323 0. 00|65 4P
Error 6 0. 00009 0. 00|01
C Total 11 0. p332

Type lll Tests
Source DF Sum of Squares |[Mean Square] F Stat |Prob>F
X 1 0. 00114 0.00114 1
X3 1 0. 0125 0.01735 8
X1X3 1 0. 0193 0.0193 1
XoX4 1 0. 0]0 6 2 0. 0042 4
XoXo 1 0. 0024 0.0034 1
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Partial Regression Plot
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i Step 5. Prediction and optimization

D={(x,,x,,x,,x,):1<x,<54,5<x, <60},
1<x,<65,15<x, <704.

that is to find (x,, x;, Xx,, x,) such that

A * * A
y(xl ’x29x3’x4) = mng Y(x19x29x3>x4)9

where y(x,,x,,x5,x,)1s given by (1).



i Step 5. Prediction and optimization

By optimization algorithm, it 1s easily found
that and the corresponding response
x,=54,x,=502,x, =1,x, =70 1S the maximum
y =19.3%.

However, this is only a statistical prediction
and further verification with confirmation
experiments is needed.



Centered moded

$=0.1277 + 0.0281(x, —3.2) + 0.000937 (x, — 32.5)
+0.00114(x, —42.5) +0.00058 (x, —3.75)(x, — 42.5)

+0.000082 (x, —32.5)7, )
with R?2=97.05% and S?= 0.0002.
Normal Plot Residual Plot
9,024 .f_,/ | :I-nz1
J//
A / : R
N f.—f’i ; 0
4
P F

=1 o
i AN_Y




i Using optimization we find maximum
V= 2(-)350

at x, =54,x,=439,x, =65,x, =70.

Step 6. Further experiments

The simplest way for additional experiments 1s to

run a few experiments atX; = 5.4,X, =43.9,x; =0..
and x, =70.



Many smooth techniques, such as

* polynomial regression model

e kernel estimator

* Kriging models

e wavelets

 spline, B-spline

e Artificial neural networks

can be used for estimation of the function g.



3 Uniform designs

Historical review



‘Computer Experiments

-- space filling design

In 1978 three big projectsin system engineering
raised the sametype of problemstome. It needs
one day calculation in a computer to obtain the
output y from the given input under thetrue

modéel
y:g('xla'”axs)'

where the function g has no analytic formula and y
1s the solution of a set of differential equations.



They wanted to choose a representative set of

inputs, {x,,---,x,}, and related output
i Yis 5 Yu to find a good approximate model g

that is much simpler than the true one.
Y= g(x19”°9xs)°

Computer Experiments

Input Quitput

X f —}
L

L approximate J

model




The number of inputsof theinterest in thesethree

projectsisat least 5 and the number of levels,
Input (factor), they expected, is at |east
18. Sincethe experiment was expensive and the

computational timeislong, the number of runs, =,
wished to bewithin 50. That Is

s 235, ¢=18, and n <50.

We (Y. Wang and myself) proposed the uniform

design.
* Fang (1980)

Acta Math. Appl. Sinica

* Wang and Fang (1981)
Chinese Sci. Bulletin



Applications of
approximation models

+

= Visualization
m estimation

= Optimization
m Others



A comprehensivereview can refer to

* Fang and Wang (1994)
Number-Theoretic Methods in Statistics

4

* Fang and Hickernell (1995)
Invited talk in the ISI 50th Session

* Fang, Lin, Winker and Zhang (2000)
Technometrics

* Fang and Lin (2003)
Handbook in Statistics: Statistics in
Industry



3 Uniform designs

IN computer
experiments



Uniform Design in Computer
Experiments

Computer models are often used in science and
engineering fields to describe complicated physical
phenomena which are governed by a set of equation,
including linear, nonlinear, ordinary, and partial
differential equations. It may take a long time to find
the output from the input under the true model

y=g(x, =5 X).

where the function g has no analytic formula.



i A case study of computer experiments

In the study of the flow rate of water
from an upper aquifer to a lower aquifer, the
aquifers are separated by an impermeable
rock layer but there 1s a borehole through that
layer connecting them.



The model formulation 1s based on assumption of

the upper aquifer into the borehole and from the

i no groundwater gradient, steady-state flow from

borehole 1nto the lower aquifer, and laminar,
isothermal flow through the borehole.

The response variable y, the flow rate through
the borehole in m’/yr, is determined by

log()[1+—— -t —+ ]

log( 7/ 2K, T

where the 8 input variables are as follows:

y




r,,(m) : radius of borehole

|

r(m): radius of influence
T (m?/ yr): transmissivity of upper aquifer
T,(m”/ yr): transmissivity of lower aquifer

H_(m): potentiometric head of upper aquifer

H,(m) : potentiometric head of lower aquifer
L(m) : length of borehole

K (m/ yr): hydraulic conductivity of borehole



and the domain 1s given by

i re[0.05, 0.15],  €[100, 50000],
T €[63070, 115600], 7, €[63.1,116],
H_ <[990, 1110], H, €[700, 820],
L €[1120, 1680], K €[9855, 12045]

The mput variables and the corresponding
output are denoted by x = (x,,---,x, ) and y(x),
respectively. This example has been studied by
Worley (1987), An and Owen (2001) and
Morris, Mitchell and Ylvisaker (1993).



A. Design of Experiment

From the inference of each variable to
the output y, we sort 8 input variables into

r.2L >2H >H, 2k >T 2T >r
and put them into three groups:
{Rw}ﬂ{Hu?}[li’L’Kw} and {T}’T;t’r}‘

+

The number of levels of each variable in
these three groups 1s chosen as 16, 8, and 4,
respectively.



i A. Design of Experiment

A uniform design table U,,(32%) can be
found on the UD-web. By the pseudo-level
technique a U,,(16 x 8 x 4°) table can be
generated and 1s 1n fact used for the study.
The design and related output are given.



Uniform Design and related output

MNo T T Th T Ha Hr L Ko k'Y

1 (005 (1Y 33366.67(3 630701 1160047 11100008 TEEST(SY 120002 11732 14(7) | 26,18
210005 (1Y L0001y SOSE0I2Y  BOTI(EY 1002.860TY BO2EGCTY 160007 101687.86(2% | 14.48
3 |006 2 L0001y QMO  BOTIE 10SB.STSY TIT.14(2y 168008 11106.43(5% | 22.75
4 006 (2 366673 2800003 98IV 111000008y 7342003 128003 10480.71(3Y [ 3098
5 (006 (3 100001y 11560004 B30 107571080 7514304y 160007 11106.43(5% | 28.33
G 006 (3 1873333020 BOSBO0C2y  B0UTI 10S&.5TCSY TESTI(6Y 188008 12045 00(8% [ 24.80
T (007 (4 F3FIG6.67(3) 307001y 9R.3IVI 10028507 TERST(SY 120002 11732.14(7) | 48.85
& 00T (4Y 18TIEIS0E 115600040 1160004 0001y 700001y 136004y 10TeI.ST(4y | 3536
9 | 0u0E (S L0000l 1 11560004 S0.7302% 1075 TL06Y 7514304 1520080 10793.57(4% | 42.44
10 | 008 (5% 168733.33(2% BOSE0(2Y BOT3(2Y  1075.7168) 8028607y 112001% 98550001 | 44.16
11 |008 6y S0000.00(4% 980003 6310010 1041.4304% 7171402 180067 107935704 | 47.49
12 008 (63 S0000.004y 115600047 &3.1001%  1007.1402% TEESYISY 144005) 11419.2006% | 41.04
13 (009 07 18733352 630700y 116.0004% 107571060 7514304y 112001% 11419.29068% | 8377
14 009 (7Y 333666703 115600040 1160004 100°7. 1402 T17.1402y 136004) 11106.43(5% | 6005
15 (010 (&Y S04y S0S8002  83.1001% 102420030 Q0008 1360040 98550001 | 43.15
16 |0.10 (8Y 187333302 BOSS0) 983703 10885705 7000001 112001% 10480.71(3Y | 9798
17 (010 09y S0000.004y S05S8002  83.1001% 10242003 7000001 152006) 10480.71(3% | T4.44
18 |0.10 09y 16733.33(2% BOS&0C2Y 983703  1L0SE.5T(5)Y £200008) 1120010 L0167.86(2) | T2.23
19 |011610% S0000.0004% 800003  G3.1001% 1024, 29030 TL7.L4(2) 1520063 LO7TR3.57(4) | 8218
20 0115100 100 17 G370 BEITIEY  1041.4304% BO2.88(7y 180007 12045.0008% | 68.06
21 0120117 FEIGB.673 6300 1160004 9200001y TR TL(EY 128003 12045.0008% | 81.63
20 012011 100 1 QRO0C3Y BRITII 10928807 BO2E88(YY 1880(EY 9855.0001% | 72.54
23 |012012% 187333302 115800040 B3I 10928607 73420030 120002 11419.20(8)1 | 161.35
24 (012012 1BTIIISC 3070 &3.1001%  1041.4304% TESTI(6Y 168008 12045.0008% | 86.73
25 013013y I3IGB.6703 BOSE0Y  116.00(4% 11100008 TEESTEY 128003 11732 1407 | 1647
26 (013013 100 1 SR0(IY  9EITE  11100000RY BEX0U000RY 128003 1018T7.86(2% | 121.76
27 014014y S0p00. 04y S80I B3.1001% 10071402 B8y 144005 10167.86(2% | TE.51
28 |014014% JI3IGE.6TI 9800003 116.0004% 10242003 7000001 120002 10480, 71(3Y | 18475
29 (014015 SO000.00 ¢4y G3070¢1% 11600040 00001y TESTI(EY 144005 98550001 | B9.54
30 |0.14015% S0000.00¢(4% 1156800047 §3.1001% 1007.14(27 7342903y 144005 11732.14(7) | 141.09
31 (015016 J3366.67(3) 6307001  MEST(I  900.00(l)  TSL43(4) 136004) 11419.2906% | 13994
32 0215016 1000l 1 11560004 S0.T302 1041.4304% 73420030 1520080 11106.43(5% [ 157.59




B. Quadratic regression model

For the modeling, many authors proposed a number
of methods. When the function g is a periodic, a

Fourier regression model 1s recommended.

The spatial modeling technique of kriging

(Koehler and Owen (1996)) 1s based on a stationary
Gaussian stochastic process and the Bayesian

approach (Sacks, Welch, Mitchell and Wynn (1989)
and Morris, Mitchell and Ylvisaker (1993)) uses the

prior information.



log() = 4.1560 +1.9903(log(r. ) + 2.3544)
—0.0007292(L —1400)

—0.003554(H, —760)

+0.0035068(H , —1050)
+0.000090868(K . —10950)
+0.000015325(H, —1050)(H, — 760)

+0.00000026487(L —1400)*
—0.0000071759(H, — 760)"

—0.0000068021(H , —1050)
—0.00087286(log(r) — 8.8914)

This model has an MSE=0.2578156.




ANOVA Tables (SAS Output)

Analysis of Variance

Source DF Sum of Sguares | Mean Sgquare F Stat Probh = F
Model 9 13.1368 1.4595 | 108755.062 0.0001
Error 22 0.0003 1.342E-05

C Total 31 13.1371

)| Type ITIT Tests

Source DE Sum of Sguares | Mean Sguars E' Stat Prokw > R
LOGE RW i 10.3539 10.3539( 771441.372 0.0001

L 1 0.4083 0.4083 | 30420.3025 0.0001

HL i} 0.4714 0.4714 | 35124.6151 0.0001

HU Ak 0.3239 0.3239( 24134.5154 0.0001

KW 7] 0.0732 0.0732 5457 .3163 0.0001
HUHL i 0.0085 0.0085 &30.7976 0.0001

L2 1 0.0008 0.0008 £1.5301 0.0001

HIL, 2 il 0.0013 0.0013 95,0652 0.0001

HU 2 1 0.0013 0.0013 95.6290 0.0001
3 Analysis of Varlance

SOUrCe DF sum of Sguares | Mean Sguare F' Stat Probh > F
Model 10 13.1369 1.3137 | 128225, 959 0.0001
Error 21 0.0002 1.041E-05

2 Total 31 12,1371
)| Tyoe IIT Tests

SoUrcs DF Sum of Sguares | Mean Sguares F' Stat Probh > F
LOE RW 1 10.2746 10.2746 | @87235.474 0.0001
L 1 0.3090 0.32090 | 29594 . 9581 0.0001
HL 1 0.4615 0.4815 | 44347.0990 0.0001
HU 1 0.2601 0.2601 | 24990.9369 0.0001
KW 1 0.0727% 0.0727 E9288.6817F 0.0001
HUHL 1 0.007& 0.0078 F25.7697 0.0001
L_2 1 0.0009 g.0009 Bl1.2494 0.0001
HL_2 1 0.0013 0.0013 120.58167% 0.0001
HU_ 2 1 0.0012 0.0012 111 .9492 0.0001
LOS R 1 T.6871E-05 T.6F1E-05 F.3711 0.0130




D. Comparisons among different designs
and models

+

We compare the performances of different
designs:

* Latin hypercube design
* maximin design
* maximin Latin hypercube design

* modified maximin design

* uniform design



maximin design, maximin Latin hypercube design
and modified maximin design.

For comparing different models they used
the mean square error (MSE) as the criterion, 1.¢.,

N
MSE = #h _JA’(xk))za
k=1

where x, ,i =1,---, N are randomly chosen from the
domain and Y(x;) is its predicted value under the
underlying model. The value of N 1s chosen to be
greater than 1000.

i The latter used the Latin hypercube design,




D. Comparisons among different designs
and models

+

For comparing four different designs, Morris, Mitchell
and Ylvisaker (1993) considered prediction errors at 400
random samples in the domain and at the 256 corner points of
domain. They plot the prediction errors in two separated
figures. Obviously, the B-spline model has large errors for the
256 corner points. This bias may be resulted from small

number of levels for some input variables.
Ho and Xu (2000) employed the table U,,(30%) to design 30

level-combinations with the B-spline model mentioned above
for modeling.
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Prediction Errorsat 256 Corner Pointsfor Seven Design/M odels
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Uniform designs
wIith mixtures



Many products are formed by mixing two or

i more ingredients together.
Food
. Calcium Coffee
g
e 75 powde
) Vegetable
Flaked —— < Shortening
Coconut @, E

Coffee Bread

EXPERIMENTSWITH MIXTURES



i The UD can beutilized as

 afractional factorial design
- a design of computer experiments

- arobust design

- adesign with mixtures



i UD Society

= he UD has been used since 1980.

= Several conference and workshops were
held In the past years

= More than 300 case studies of the use of
UD during 1994 - 2000

= There Is a nationwide society:
Uniform Design Association of China
since 1995



The First Conference, Beljing, 1995




‘ Hong Kong Symposium, 1999
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Hong Kong Symposium, 1999




Xian Conference, 2001




i Comments on uniform design

= Another approach to space-filling design using
methods from number theory is briefly described In
Exercise 7.7. This approach is reviewed by Fang,
Wang and Bentler (1994) and its application in
design of experiments discussed in Ch. 5 of Fang and
Wang (1994). In the computer science literature the
method is often called quasi-Monte Carlo sampling;
see Neiderreiter (1992).
--D.R. Cox and N. Reid (2000), 7he Thoery of the

Design of Experiments.



i Comments on uniform design

= Another type of space-filling design specifies points
In the design space using methods from number

theory. The resulting design is called a uniform, or
uniformly scattered design.

--D.R. Cox and N. Reid (2000), 7he Thoery of the

Design of Experiments.



i Comments on uniform design

= An important class of designs are so-called lattices.
These have received considerable attention in number
theory under ths heading of low discrepancy sequences
A principal text is Niederreiter (1992) and Fang and
Wang (1994) (an their earlier work) make a
considerable contribution in applications to statistics,
Including design. -- R.A. Bates, R.J. Buck, E.
Riccomagno and H.P. Wynn (1996), JRSS-B, 58, 77-94
(with discussion).



Riccomagno and H.P. Wynn (1996)

i A case study by R.A. Bates, R.J. Buck, E.

= They considered a two-dimensional exercise for
comparing Latin hypercube design, modified Latin
hypercube design and lattice designs. They conclude:

= Some conclusions are that the lattice designs do
surprisingly well and a good integer lattice is robust
against changes of criterion.



Comments on uniform design, by C.F.Jeff Wu
and M. Hamada, p.445, “Experiments planing,
i analysis, and parameter design optimization.

= |f some of the noise factors have more than three
levels, the run size of the orthogonal array for the
noise factors may be too large. An alternative is to
employ a smaller plan with uniformly spread point for
the noise factors. These plans include Latin
hypercube sampling (Koehler and Owen, 1996) and
~“uniform’’ designs based on number-theoretic
methods (Fang and Wang, 1994). Since the noise
array is chosen to represent the noise variation,
uniformity may be considered to be a more important
required than orthogonality.



can explore relationships between the response

i The UD entertains several advantages. It

and the factors with a reasonable number of runs
and 1s shown to be robust to the underlying model
specification.

Wiens D P, (1991) Stat. & Prob. Letters.
Hickernell F J (1999) Stat. & Prob. Letters.
Xie M Y and Fang K T, (2000) JSPL.



Gordon Research Conference,
Williams College, MA, USA

i July 22-27, 2001

Uniform Design for Simulated Experiments,
By Kai-Tal Fang, 70 minutes

Uniform Design and Its Applications to
Chemistry and Chemical Engineering,
By Yizhen Liang, 30 minutes

Discussion, 60 minutes
Chairrd by Dennis Lin

O topics in every two years



i Uniform design

= Flexibility
s Easy to use
= Easy to understand



i Merits of the UD method

s Space filling: It IS capable of
producing samples with high
representativeness in the experimental
domain;

s Robustness: It IMposes no strong
assumption on the model, and Is against
changes of model in a certain sense;

= Multiple levels: It allows the largest
possible amount of levels for each factor.



Conclusion remarks
The UD can be utilized as

* a fractional factorial design

« a design of computer experiments

« arobust design

* a design with mixtures



ﬁ Thank you!
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i Contact information

Kai-Tal Fang
Hong Kong Baptist University

Tel:3411-7025

Fax:3411-5811

Email:ktfang(@hkbu.edu. hk
http:// www.math.hkbu.edu.hk/UniformDesign



al-Tal Fang

= Chair Professor of Mathematics, Hong Kong Baptist
University and

Professor, The Chinese Academia of Sciences.

s Research

= Multivariate Analysis & Distribution Theory
= Number-theoretic Methods (Quasi Monte Carlo)
= Uniform Design

= Fellows: ISI, IMS, ASA
= President, The Uniform Design Assocaition
= Council: ISI, ICSA, HKIS, HKSS

= Visiting Professor

= Yale, Stanford, UCLA, UNC-Chapel Hill, Swiss Federal Inst of
Tech, Ford Motor Company, etc.



