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Ford Motor Company
Dear Prof. Fang,   

I would like to invite you to visit Ford 
Motor Company form July 30 – August 1, 
2002 to provide a seminar on “Uniform 
Design for Computer Experiments And 
Industrial Experiments”. 



Ford Motor Company
In the past few years, we have tremendous in 

using Uniform Design for computer 
experiments. The technique has become a 
critical enabler for us to execute “Design for 
Six Sigma” to support new product 
development, in particular, automotive engine 
design. Today, computer experiments using 
uniform design have become standard 
practices at Ford Motor Company to support 
early stage of product design before 
hardware is available.



Ford Motor Company
We would like to share with you our successful 

real world industrial experiences in applying 
the methodology that you developed. 
Additionally, your visit will be very valuable 
for us to gain more insight about the 
methodology as well as to learn the latest 
development in the area.   

Agus Sudjianto, Engineering Manager         



Kai-Tai Fang at Ford Motor Company 



Introduction



Statistical Experimental Designs

Design of experiment is a branch of 
statistics and has been playing an important 
role in development of sciences and new 
techniques, especially, in development of 
high-tech.  

Experiments are performed  almost 
everywhere nowadays, usually for the 
purpose of discovering something about a 
particular process or system.



Experimental design

A good experimental design should 
minimize the number of 
experiments to acquire as much 
information as possible.
Knowledge discovery



Experiments, especially in high-tech 
experiments, have the following characteristics: 

• Multi-factors

• Experimental domain is large

• Underlying model is unknown 

Complexities

• Nonlinearity

• No analytic formula of the response           
surface



Experiments
-- Underlying model is unknown

Example 1.
In a biological experiment we wish to 

explore the relationship between the growth 
time      and the response      .  Assume the 
underlying model

is unknown.  There are many ways to design this 
experiment based on different statistical models.
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Weibull Growth Curve Model



The experimenter observes the response at 
several growth times,                   that are 
called levels.  For each      we repeat 
experiment      times and related  responses 
are                           
A statistical model is

1. ANOVA Models
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random errors that are independently 
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a.  ANOVA Models
-- Factorial Designs
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• are i.i.d. random errorsijε ).σ  N(0, 2

• is the overall mean of y over [0,2]µ

• is the main effect of y at jxjα



• Two-level factorial designs are not enough to explore 
non-linearity, like this example.

• Factorials with more levels are useful

Under the model we need to find a design under 
which we can efficiently estimate                               
or                      and to assess whether          
significantly depends on .           
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• Two-level factorial designs have been widely used



Two-level designs are shown to be 
insufficient for nonlinear model.
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Factorial design with 4 levels



b.  Linear regression models
-- Optimal Designs

From the professional knowledge the experimenter wants to   
use a regression model to fit relationship between x and y, for 
example

or

or more general

where functions are known and             
unknown.
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We want to design an experiment with a 
fixed number of runs such that we can obtain 
the best estimators of the parameters.
The so-called optimal design is from this idea. 
There are several criteria, such as D-optimality, A-
optimality, E-optimality, etc, in theory of optimal 
designs. See Atkinson and Donev (1992) and 
Pulkelsheim (1993) for the details.  When the 
model is

the corresponding D-optimal design is presented
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D-optimal design 
for second-order polynomial model



c. Nonparametric regression models
-- Uniform Designs

         g(x)y ,ε+=

where function g is unknown, can be 
employed. 

When the experimenter do not have any 
prior knowledge about the underlying model, 
a nonparametric regression model 



We want to estimate y(x) at each x, i.e. 
to find an approximate model

A natural idea is to observe y at 
that are uniformly scattered in the domain, i.e., 
a space filling design, the uniform design is 
one of space filling designs.           
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c. Nonparametric regression models
-- Uniform Designs



Many smooth techniques, such as

• polynomial regression model 

• kernel estimator

• wavelets

• spline, B-spline

can be used for estimation of the function g.

• Artificial neural networks

• Kriging models



Experiments can be implemented in 

• Industrial factory

• Computer
• Laboratory

The latter is called

• Simulation Experiment, or
• Computer Experiment



Uniform  
Design



Uniform designs

A demostration
example



Four factors, the amount of formaldehyde (x1), 
the reaction temperature ( x2), the reaction time (x3), 
and the amount of potassium carbonic acid (x4), are 
under consideration.  The response variable is 
designated as the yield (y). 

Step 1. Choose factors and their levels

Example 

In an chemical experiment the experimenter   
chose 4 factors each having 12 levels



• x1: the amount of formaldehyde (mol/mol):
1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2, 4.6, 5.0, 5.4

• x2: the reaction temperature (oC): 
5,10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

• x3: the reaction time (hour): 
1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5

• x4: the amount of potassium carbonic acid (ml): 
15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70

The experimental domain  and levels are chosen to be 

]7015[]561[]605[]451[ , ., , ., ×××



Un(qs)

Maximum Number
of Factors

Number of LevelsNumber of 
Experiments

Uniform Design

The uniform design, like the orthogonal design, 
can be tabulated.

http://www.math.hkbu.edu.hk/UniformDesign

Step 2. Design



No 1 2 3
1 1 1 1
2 2 1 2
3 3 2 1
4 1 2 2
5 2 3 1
6 3 3 2

U6(32×2) 
No. 1 2 3 4
1 1 10 4 7
2 2 5 11 3
3 3 1 7 9
4 4 6 5 3
5 5 11 10 11
6 6 9 8 1
7 7 4 5 12
8 8 2 3 2
9 9 7 12 8
10 10 12 6 4
11 11 8 2 10
12 12 3 9 6

U12(124)  

• All the levels of each column appear
equally often

• Experimental points determined by   
the table uniformly are scattered on 
the domain.



No. 1 2 3 4
1 11 8 2 10
2 9 7 12 8
3 8 2 3 2
4 10 12 6 4
5 1 10 4 7
6 2 5 11 3
7 4 6 1 5
8 7 4 3 12
9 6 9 8 1
10 3 1 7 9
11 5 11 10 11
12 12 3 9 6

U12(124) Table

Step 2. Design

This experiment 
could be arranged 
with a UD table 
of the form 
U12(124), where n
is a multiple of 7. 
It turns out that 
the experimenter 
chooses U12(124)
design.

5.0
4.2
3.8
4.6
1.0
1.4
2.2
3.4
3.0
1.8
2.6
5.4

40
35
10
60
50
25
30
20
45
5
55
15

1.5
6.5
2.0
3.5
2.5
6.0
1.0
3.0
4.5
4.0
5.5
5.0

60
50
20
30
45
25
35
70
15
55
65
40

x1     x2      x3 x4No. 1 2 3 4
1 11 8 2 10
2 9 7 12 8
3 8 2 3 2
4 10 12 6 4
5 1 10 4 7
6 2 5 11 3
7 4 6 1 5
8 7 4 3 12
9 6 9 8 1
10 3 1 7 9
11 5 11 10 11
12 12 3 9 6



No. 1 2 3 4
1 11 8 2 10
2 9 7 12 8
3 8 2 3 2
4 10 12 6 4
5 1 10 4 7
6 2 5 11 3
7 4 6 1 5
8 7 4 3 12
9 6 9 8 1
10 3 1 7 9
11 5 11 10 11
12 12 3 9 6

No. 1 2 3 4
1 11 8 2 10
2 9 7 12 8
3 8 2 3 2
4 10 12 6 4
5 1 10 4 7
6 2 5 11 3
7 4 6 1 5
8 7 4 3 12
9 6 9 8 1
10 3 1 7 9
11 5 11 10 11
12 12 3 9 6

5.0
4.2
3.8
4.6
1.0
1.4
2.2
3.4
3.0
1.8
2.6
5.4

40
35
10
60
50
25
30
20
45
5
55
15

1.5
6.5
2.0
3.5
2.5
6.0
1.0
3.0
4.5
4.0
5.5
5.0

60
50
20
30
45
25
35
70
15
55
65
40

x1      x2       x3 x4 y
0.1836
0.1739
0.0900
0.1176
0.0795
0.0118
0.0991
0.1319
0.0717
0.0109
0.1266
0.1424

3. Run experiments



A linear model
)1.4(,)( 443322110  xβxβxβxββyE          ++++=
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by the least square estimation we obtain:  

Step 4. Modeling

Source DF Sum of Squares Mean Square F Stat Prob > F
Model 4 0.0274 0.0069 8.2973 0.0086

Error 7 0.0058 0.0008

C Total 11 0.0332

Analysis of Variance

ANOVA Table:

Source DF Sum of Squares Mean Square F Stat Prob > F
x1 1 0.018 0.018 21.8021 0.0023

x2 1 0.0033 0.0008 3.9496 0.0872

x3 1 0.0004 0.0004 0.515 0.4962

x4 1 0.0046 0.0046 5.6248 0.0495

Type III Tests



By the backward elimination

10289.00107.0 xy +=

with R2 = 57.68% and S2 = 0.0014.

Consider the quadratic regression model
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with R2 = 97.43% and S2 = 0.0001.



Source DF Sum of Squares Mean Square F Stat Prob > F
x2 1 0.0014 0.0014 10.1949 0.0188

x3 1 0.0125 0.0125 88.0883 0.0001

x1x3 1 0.0193 0.0193 135.5636 0.0001

x2x4 1 0.0062 0.0062 43.6923 0.0006

x2x2 1 0.0024 0.0024 16.8276 0.0063

Type III Tests

Source DF Sum of Squares Mean Square F Stat Prob > F
Model 5 0.0323 0.0065 45.5461 0.0001

Error 6 0.0009 0.0001

C Total 11 0.0332

Analysis of Variance

ANOVA Table



Residual Plot Normal Plot

Partial 
Regression  Plot



Partial Regression  Plot
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Step 5. Prediction and optimization



By optimization algorithm, it is easily found 
that and the corresponding response            

is the maximum70,1,2.50,4.5 ==== 4321 xxxx
%.3.19ˆ =y

However, this is only a statistical prediction 
and further verification with confirmation 
experiments is needed.

Step 5. Prediction and optimization



Centered model

,)5.32(000082.0    
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with R2 = 97.05% and S2 = 0.0002.
Normal Plot Residual Plot

(2)



Using optimization we find maximum

%5.26ˆ =y

.70,5.6,9.43,4.5 ==== 4321 x x x x  at

Step 6. Further experiments

The simplest way for additional experiments is to 
run a few experiments at                                        
and                                 

,5.6x,9.43x,4.5x 321 ===
.70=4x



Many smooth techniques, such as

• polynomial regression model 

• kernel estimator

• Kriging models

• wavelets

• spline, B-spline

can be used for estimation of the function g.

• Artificial neural networks



Uniform designs

Historical review



In 1978 three big projects in system engineering
raised the same type of problems to me.  It needs 
one day calculation in a computer to obtain the 
output y from the given input under the true 
model

Computer Experiments
-- space filling design

              xxgy s ).,,( 1 L=

where the function g has no analytic formula and y 
is the solution of a set of differential equations.   



They wanted to choose a representative set of 
inputs,                        and related output 

to find a good approximate model     
that is much simpler than the true one.

},{ n1 x ,,x L
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approximate 
model

Computer Experiments



• Wang and Fang (1981) 
Chinese Sci. Bulletin

• Fang (1980)
Acta Math. Appl. Sinica

The number of inputs of the interest in these three 
projects is at least 5 and the number of levels, 
q, of each input (factor), they expected, is at least 
18. Since the experiment was expensive and the 
computational time is long, the number of runs, n, 
wished to be within 50.  That is

,5≥s andq   ,18≥ .50≤n

We ( Y. Wang and myself) proposed the uniform 
design.



Applications of  
approximation models

Visualization
estimation
optimization
others



• Fang and Wang (1994) 
Number-Theoretic Methods in Statistics

• Fang and Hickernell (1995) 
Invited talk in the ISI 50th Session

• Fang, Lin, Winker and Zhang (2000)       
Technometrics

• Fang and Lin (2003)       
Handbook in Statistics: Statistics in 

Industry

A comprehensive review can refer to 



Uniform designs 
in computer 
experiments



Computer models are often used in science and 
engineering fields to describe complicated physical 
phenomena which are governed by a set of equation, 
including linear, nonlinear, ordinary, and partial 
differential equations.  It may take a long time to find 
the output from the input under the true model

Uniform Design in Computer 
Experiments

               ).(  1 s, x, xg=y L

where the function g has no analytic formula.



A case study of computer experiments

In the study of the flow rate of water 
from an upper aquifer to a lower aquifer, the 
aquifers are separated by an impermeable 
rock layer but there is a borehole through that 
layer connecting them. 



The model formulation is based on assumption of 
no groundwater gradient, steady-state flow from 
the upper aquifer into the borehole and from the 
borehole into the lower aquifer, and laminar, 
isothermal flow through the borehole.

The response variable y, the flow rate through 
the borehole in m3/yr, is determined by

where the 8 input variables are as follows:

                 .
]1)[log(

][2
2)log(

2
l

u

wwwr
r

u

w T
T

Kr
LT

r
r

luu HHTy
++

−
=

π



length of borehole

radius of borehole:)(mrw

:)(mr
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radius of influence                   
transmissivity of upper aquifer

transmissivity of lower aquifer

potentiometric head of upper aquifer

potentiometric head of lower aquifer

hydraulic conductivity of borehole



and the domain is given by
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The input variables and the corresponding 
output are denoted by                         and y(x),
respectively.  This example has been studied by 
Worley (1987), An and Owen (2001) and 
Morris, Mitchell and Ylvisaker (1993).

),,( 81 xx L=x



A.  Design of Experiment

From the inference of each variable to 
the output y, we sort 8 input variables into

and put them into three groups:                         
and

The number of levels of each variable in 
these three groups is chosen as 16, 8, and 4, 
respectively.  

rTTkHHL r ulwluw ≥≥≥≥≥≥≥    

},,,{},{ wluw KLHHR   }.,,{ rTT ul



A uniform design table U32(328) can be 
found on the UD-web.  By the pseudo-level 
technique a U32(16 × 84 × 43) table can be 
generated and is in fact used for the study.  
The design and related output are given.

A.  Design of Experiment



Uniform Design and related output



The spatial modeling technique of kriging
(Koehler and Owen (1996)) is based on a stationary
Gaussian stochastic process and the Bayesian 
approach (Sacks, Welch, Mitchell and Wynn (1989) 
and Morris, Mitchell and Ylvisaker (1993)) uses the 
prior information. 

B. Quadratic regression model

For the modeling, many authors proposed a number 
of methods. When the function g is a periodic, a 
Fourier regression model is recommended.



This model has an MSE=0.2578156.
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ANOVA Tables (SAS Output)



D.  Comparisons among different designs    
and models

We compare the performances of different 
designs:

• Latin hypercube design
• maximin design
• maximin Latin hypercube design
• modified maximin design

• uniform design



∑
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k
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The latter used the Latin hypercube design, 
maximin design, maximin Latin hypercube design
and modified maximin design.

For comparing different models they used
the mean square error (MSE) as the criterion, i.e.,

where                       are randomly chosen from the 
domain and            is its predicted value under the 
underlying model.  The value of N is chosen to be 
greater than 1000.

Nik ,,1, L=x
)(ˆ ky x



For comparing four different designs, Morris, Mitchell 
and Ylvisaker (1993) considered prediction errors at 400 
random samples in the domain and at the 256 corner points of 
domain.  They plot the prediction errors in two separated 
figures. Obviously, the B-spline model has large errors for the 
256 corner points. This bias may be resulted from small 
number of levels for some input variables.

Ho and Xu (2000) employed the table U30(308) to design 30 
level-combinations with the B-spline model mentioned above 
for modeling.

D.  Comparisons among different designs    
and models



Prediction Errors at 400 Random Samples for Seven Design/Models



Prediction Errors at 256 Corner Points for Seven Design/Models



Uniform designs 
with mixtures



Many products are formed by mixing two or 
more ingredients together.

Flour
WaterSugar

Vegetable 
ShorteningFlaked 

Coconut
Salt

YeastEmulsifiers

Calcium 
propionate

Coffee
PowderLiquid

Flavor

Food
Coloring

Coffee Bread
How to decide the proportions of the ingredients? 

Experience ExperimentsEXPERIMENTS WITH MIXTURES



The UD can be utilized as

• a fractional factorial design

• a design of computer experiments

• a robust design

• a design with mixtures



UD Society
The UD has been used since 1980.

Several conference and workshops were 
held   in the past years
More than 300 case studies of the use of 
UD during 1994 - 2000
There is a nationwide society: 
Uniform Design Association of China 
since 1995



The First Conference, Beijing, 1995



Hong Kong Symposium, 1999



Hong Kong Symposium, 1999



Xian Conference, 2001



Comments on uniform design

Another approach to space-filling design using 
methods from number theory is briefly described in 
Exercise 7.7. This approach is reviewed by Fang, 
Wang and Bentler (1994) and its application in 
design of experiments discussed in Ch. 5 of Fang and 
Wang (1994). In the computer science literature the 
method is often called quasi-Monte Carlo sampling; 
see Neiderreiter (1992).                                              
--D.R. Cox and N. Reid (2000), The Thoery of the 
Design of Experiments.



Another type of space-filling design specifies points 
in the design space using methods from number 
theory. The resulting design is called a uniform, or 
uniformly scattered design.                                     
--D.R. Cox and N. Reid (2000), The Thoery of the 

Design of Experiments.

Comments on uniform design



An important class of designs are so-called lattices. 
These have received considerable attention in number 
theory under ths heading of low discrepancy sequences. 
A principal text is Niederreiter (1992) and Fang and 
Wang (1994) (an their earlier work) make a 
considerable contribution in applications to statistics, 
including design. -- R.A. Bates, R.J. Buck, E. 
Riccomagno and H.P. Wynn (1996),  JRSS-B, 58, 77-94 
(with discussion).

Comments on uniform design



A case study by R.A. Bates, R.J. Buck, E. 
Riccomagno and H.P. Wynn (1996)

They considered a two-dimensional exercise for 
comparing  Latin hypercube design, modified Latin 
hypercube design and lattice designs. They conclude:

Some conclusions are that the lattice designs do 
surprisingly well and a good integer lattice is robust 
against changes of criterion.



Comments on uniform design, by C.F.Jeff Wu 
and M. Hamada, p.445, “Experiments planing, 
analysis, and parameter design optimization.

If some of the noise factors have more than three 
levels, the run size of the orthogonal array for the 
noise factors may be too large. An alternative is to 
employ a smaller plan with uniformly spread point for 
the noise factors. These plans include Latin 
hypercube sampling (Koehler and Owen, 1996) and 
``uniform’’ designs based on number-theoretic 
methods (Fang and Wang, 1994). Since the noise 
array is chosen to represent the noise variation, 
uniformity may be considered to be a more important 
required than orthogonality.



The UD entertains several advantages.  It 
can explore relationships between the response 
and the factors with a reasonable number of runs 
and is shown to be robust to the underlying model 
specification. 

Wiens D P, (1991) Stat. & Prob. Letters.
Hickernell F J (1999)  Stat. & Prob. Letters.
Xie M Y and Fang K T, (2000)  JSPI.



Uniform Design for Simulated Experiments,
By Kai-Tai Fang, 70 minutes

Uniform Design and Its Applications to 
Chemistry and Chemical Engineering,
By Yizhen Liang, 30 minutes

Discussion, 60 minutes
Chairrd by Dennis Lin

9 topics in every two years

Gordon Research Conference, 
Williams College, MA, USA      

July 22-27, 2001 



Uniform design

Flexibility
Easy to use

Easy to understand



Merits of the UD method
Space filling: it is capable of 
producing samples with high 
representativeness in the experimental 
domain;
Robustness: it imposes no strong 
assumption on the model, and is against 
changes of model in a certain sense;
Multiple levels: it allows the largest 
possible amount of levels for each factor.



Conclusion remarks
The UD can be utilized as 

• a fractional factorial design

• a design of computer experiments

• a robust design

• a design with mixtures



.Thank you!
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